Solveeit Logo

Question

Question: Find the minimum value of \(\cos e{c^2}\theta + {\sin ^2}\theta \). A. 0 B. -1 C. 1 D. 2...

Find the minimum value of cosec2θ+sin2θ\cos e{c^2}\theta + {\sin ^2}\theta .
A. 0
B. -1
C. 1
D. 2

Explanation

Solution

Hint: Here, we will use the property AMGMA \cdot M \geqslant G \cdot M to find the minimum value, where A.M is the Arithmetic mean and G.M is the Geometric mean.

Complete step-by-step answer:

Given equation is cosec2θ+sin2θ\cos e{c^2}\theta + {\sin ^2}\theta .
As we know that AMGMA \cdot M \geqslant G \cdot M, so let us use this property to find the minimum value of cosec2θ+sin2θ\cos e{c^2}\theta + {\sin ^2}\theta .
We know that the A.M i.e.., Arithmetic mean of two terms ‘a’ and ‘b’ will be a+b2\dfrac{{a + b}}{2} i.e..,
AM=a+b2(1)A \cdot M = \dfrac{{a + b}}{2} \to (1).
Similarly G.M i.e.., Geometric mean of two terms ‘a’ and ‘b’ will be ab\sqrt {a \cdot b} i.e..,
GM=ab(2)G \cdot M = \sqrt {a \cdot b} \to (2)
Now, let us consider cosec2θ\cos e{c^2}\theta and sin2θ{\sin ^2}\theta be two terms, then the A.M and G.M of these terms can be written as
AM=cosec2θ+sin2θ2[ from eq(1)]A \cdot M = \dfrac{{\cos e{c^2}\theta + {{\sin }^2}\theta }}{2}\left[ {\because {\text{ from eq(1)}}} \right]
GM=cosec2θsin2θ[ from eq (2)]G \cdot M = \sqrt {\cos e{c^2}\theta \cdot {{\sin }^2}\theta } \left[ {\because {\text{ from eq (2)}}} \right]
Now, let us substitute the above values in the property AMGMA \cdot M \geqslant G \cdot M, we get
cosec2θ+sin2θ2cosec2θsin2θ cosec2θ+sin2θ21[cosec2θsin2θ=1sin2θ.sin2θ=1] cosec2θ+sin2θ2  \Rightarrow \dfrac{{\cos e{c^2}\theta + {{\sin }^2}\theta }}{2} \geqslant \sqrt {\cos e{c^2}\theta \cdot {{\sin }^2}\theta } \\\ \Rightarrow \dfrac{{\cos e{c^2}\theta + {{\sin }^2}\theta }}{2} \geqslant \sqrt 1 \left[ {\because \cos e{c^2}\theta \cdot {{\sin }^2}\theta = \dfrac{1}{{{{\sin }^2}\theta }}.{{\sin }^2}\theta = 1} \right] \\\ \Rightarrow \cos e{c^2}\theta + {\sin ^2}\theta \geqslant 2 \\\
So, from the above equation, we can say that the value of cosec2θ+sin2θ\cos e{c^2}\theta + {\sin ^2}\theta is always greater than or equal to 2.
Hence, the minimum value of cosec2θ+sin2θ\cos e{c^2}\theta + {\sin ^2}\theta is 2.
So, Option D is the required answer.

Note: While solving these types of problems, you must know the property AMGMA \cdot M \geqslant G \cdot M such that it will give you the solution easily without performing any other operations to simplify the given terms. The definitions of Arithmetic mean and Geometric mean have to be known perfectly to solve.