Solveeit Logo

Question

Mathematics Question on Probability

Find the mean number of heads in three tosses of fair coin.

Answer

Let X denote the success of getting heads.

Therefore, the sample space is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

It can be seen that X can take the value of 0, 1, 2, or 3.

P(X=0)=P(TTT)

=P(T).P(T).P(T)

=12X12X12\frac{1}{2}X\frac{1}{2}X\frac{1}{2}=18\frac{1}{8}

∴ P (X = 1) = P (HHT) + P (HTH) + P (THH)

12X12X12X12X12X12X12X12X12\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}=38\frac{3}{8}

∴P(X = 2) = P (HHT) + P (HTH) + P (THH)

12X12X12X12X12X12X12X12X12\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}X\frac{1}{2}=38\frac{3}{8}

∴P(X=3)=P(HHH)=12X12X12\frac{1}{2}X\frac{1}{2}X\frac{1}{2}

=18\frac{1}{8}

Therefore, the required probability distribution is as follows.

X0123
P(X)18\frac{1}{8}38\frac{3}{8}38\frac{3}{8}18\frac{1}{8}

Mean of XX(X),μ=∑XiP(Xi)

=0×18+1×38+2×38+3×180×\frac{1}{8}+1×\frac{3}{8}+2×\frac{3}{8}+3×\frac{1}{8}

=38+38+38\frac{3}{8}+\frac{3}{8}+\frac{3}{8}

=32=1.5\frac{3}{2}=1.5