Solveeit Logo

Question

Question: Find the mean, mode and median. Marks| No. of students ---|--- \[25 - 35\]| \[7\] \[35 - 4...

Find the mean, mode and median.

MarksNo. of students
253525 - 3577
354535 - 453131
455545 - 553333
556555 - 651717
657565 - 751111
758575 - 8511
Explanation

Solution

Use the formulas of Mean, Median for the grouped data, also use Mode=3(media)2(mean)Mode = 3(media) - 2(mean) for evaluation of Mode.

Complete step-by-step answer:
The mean of observations as we know is the sum of the values of all the observations divided by the total number of observations.
Mean(X)=fixifiMean\,\left( {\overline X } \right) = \dfrac{{\sum {{f_i}{x_i}} }}{{\sum {{f_i}} }}
Here Greek letter \sum {} means summations and fi{f_i} and xi{x_i} are the respective class mark and frequency for each class interval we require a point which serves as the representative of the whole class. It is assumed that the frequency of each class is centered on its mid-point.
So the midpoint of each class can be chosen to represent the observations failing in the class.
Recall that we find the midpoint of a class (or its class mark) by finding the average of its upper and lower limits.
That is Classmark=UpperClassLimit+LowerClassLimit2Class\,\,mark\,\, = \,\,\dfrac{{Upper\,\,Class\,\,Limit\,\, + \,\,Lower\,\,Class\,\,Limit}}{2}
With reference to the table the class mark for internal 253525 - 35 is 25+352=30\dfrac{{25 + 35}}{2} = 30. So let's prepare the whole table as shown:

MarksNo. Of Students(fi)Class Marks(xi)(fixi)
253525 - 35773030210210
354535 - 453131404012401240
455545 - 553333505016501650
556555 - 651717606010201020
657565 - 7511117070770
758575 - 851180808080

Adding the number of students and the values of fixi{f_i}{x_i}, we’ll get:

fi=100 fixi=4979  \Rightarrow \sum {{f_i} = 100} \\\ \Rightarrow \sum {{f_i}{x_i} = 4979} \\\

fixi{f_i}{x_i} is obtained by Multiplying frequency column with class mark column.
Thus we have:

Mean(X)=fixifi Mean(X)=4970100 Mean(X)=49.7  \Rightarrow Mean\,\left( {\overline X } \right) = \dfrac{{\sum {{f_i}{x_i}} }}{{\sum {{f_i}} }} \\\ \Rightarrow Mean\,\left( {\overline X } \right) = \dfrac{{4970}}{{100}} \\\ \Rightarrow Mean\,\left( {\overline X } \right) = 49.7 \\\

Now for calculation of median, we require cumulative frequency (cf) which is nothing but the sum of frequencies preceding it. Let us prepare the table first.

MarksNo. Of Students(fi)Cumulative Frequency(cf)
253525 - 357777
354535 - 4531313838
455545 - 5533337171
556555 - 6517178888
657565 - 7511118989
758575 - 8511100100

So we again have:

N=fi=100 N2=50  \Rightarrow N = \sum {{f_i} = 100} \\\ \Rightarrow \dfrac{N}{2} = 50 \\\

From the table, the cumulative frequency just greater than 5050 is 7171 and the corresponding class is 455545 - 55 which will become our median class.
According to the above table, we have:

l=45 h=10 N=100 f=33 cf=38  \Rightarrow \,l\,\, = \,\,45 \\\ \Rightarrow h\,\, = \,\,10 \\\ \Rightarrow N\,\, = \,\,100 \\\ \Rightarrow f\,\, = \,\,33 \\\ \Rightarrow cf\,\, = \,\,38 \\\

Now, median can be calculated using the formula as shown:
median=l+(N2cff)×h\Rightarrow median\,\, = \,\,l\,\, + \,\left( {\dfrac{{\dfrac{N}{2} - cf}}{f}} \right) \times h
Putting all values, we’ll get:

median=45+(503833)×10 median=45+3.64 median=48.64  \Rightarrow median = 45 + \left( {\dfrac{{50 - 38}}{{33}}} \right) \times 10 \\\ \Rightarrow median = 45 + 3.64 \\\ \Rightarrow median = 48.64 \\\

Now using Mode=3(media)2(mean)Mode = 3(media) - 2(mean), well get

Mode=3×48.642×49.70 Mode=145.9299.4 Mode=46.52  \Rightarrow Mode = 3 \times 48.64 - 2 \times 49.70 \\\ \Rightarrow Mode = 145.92 - 99.4 \\\ \Rightarrow Mode = 46.52 \\\

So the value of mean is 49.7, the value of median is 48.64 and the value of mode is 46.52

Note: For converting ungrouped data into grouped data, the first step is to determine how many classes you want to have. Next, you subtract the lowest value in the data set from the highest value in the data set and then you divide by the number of classes that you want to have.