Solveeit Logo

Question

Question: Find the mean and variance of the first 10 multiples of 3. \[\]...

Find the mean and variance of the first 10 multiples of 3. $$$$

Explanation

Solution

We find the mean of the given data sample by first finding the sum of data values then dividing by the number of data values which in symbols is x=1ni=1nxi \overline{x}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}} and then mean of squares of given data values x2=1ni=1nxi2 \overline{{{x}^{2}}}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}}. We find the variance as σ2=x2(x)2 {{\sigma }^{2}}=\overline{{{x}^{2}}}-{{\left( \overline{x} \right)}^{2}}.$$$$

Complete step-by-step solution:
We know that the mean is the expectation or average of the given data value. If there are nn data values say x1,x2,...,xn{{x}_{1}},{{x}_{2}},...,{{x}_{n}} then mean of data sample is given by
x=1ni=1nxi\overline{x}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}}
Variance is the mean of squared deviations of sample mean. It is given by the formula
σ2=x2(x)2{{\sigma }^{2}}=\overline{{{x}^{2}}}-{{\left( \overline{x} \right)}^{2}}
Here x2\overline{{{x}^{2}}} the mean of squares of data values and given by
x2=1ni=1nxi2\overline{{{x}^{2}}}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}}
We know that the sum SS of first nn natural numbers is given by
S=n(n+1)2S=\dfrac{n\left( n+1 \right)}{2}
We know that the sum S2{{S}_{2}} of first squared nn natural numbers is given by,
S2=n(n+1)(2n+1)6{{S}_{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}
From the question we are given the data sample of first 10 multiples of 3 which means the data sample is

& 3\times 1,3\times 2,3\times 3,3\times 4,3\times 5,3\times 6,3\times 7,3\times 8,3\times 9,3\times 10 \\\ & =3,6,9,12,15,18,21,24,26,30 \\\ \end{aligned}$$ Here number of data values is $n=10.$Let us denote the data values as $${{x}_{1}}=3,{{x}_{2}}=6,{{x}_{3}}=9,...,{{x}_{10}}=30$$ Let us first find the mean of the data sample. So we need to find the sum of data values. We have to first the sum of data values which is $$\begin{aligned} & \sum\limits_{i=1}^{n}{{{x}_{i}}}={{x}_{1}}+{{x}_{2}}+{{x}_{3}}...+{{x}_{10}} \\\ & \Rightarrow \sum\limits_{i=1}^{n}{{{x}_{i}}}=3+6+9...+30 \\\ \end{aligned}$$ We take 3 common in the right hand side of the equation and have $$\Rightarrow \sum\limits_{i=1}^{n}{{{x}_{i}}}=3\left( 1+2+3...10 \right)$$ We use the formula for the sum of first $n$ natural numbers for $n=10$in the right hand side of the equation and have, $$\Rightarrow \sum\limits_{i=1}^{n}{{{x}_{i}}}=3\left( \dfrac{10\times 11}{2} \right)=165$$ So the sample mean is $$\overline{x}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}}=\dfrac{165}{10}=16.5$$ Let us find the mean of squared difference of each data value from the mean $$\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}={{3}^{2}}+{{6}^{2}}+...+{{30}^{2}}}$$ Let us take ${{3}^{2}}$ common in the right hand side of the equation and have $$\Rightarrow \sum\limits_{i=1}^{n}{{{x}_{i}}^{2}={{3}^{2}}\left( {{1}^{2}}+{{2}^{2}}+{{...10}^{2}} \right)}$$ We use the formula for the sum of first squared $n$ natural numbers for $n=10$in the right hand side of the equation and have, $$\begin{aligned} & \Rightarrow \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}=9\left( \dfrac{10\times \left( 10+1 \right)\left( 2\times 10+1 \right)}{6} \right)} \\\ & \Rightarrow \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}=9\left( \dfrac{10\times 11\times 21}{6} \right)} \\\ & \Rightarrow \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}=3465} \\\ \end{aligned}$$ The mean of squared differences is $$\overline{{{x}^{2}}}=\dfrac{1}{n}\sum\limits_{i=1}^{10}{{{x}_{i}}^{2}}=\dfrac{1}{10}\times 3465=346.5$$ So the sample variance is $${{\sigma }^{2}}=\overline{{{x}^{2}}}-{{\left( \overline{x} \right)}^{2}}=346.5-{{\left( 16.5 \right)}^{2}}=346.5-272.5=74.25$$ **Note:** We note that the variance is always a positive quantity while mean may not be. The squareroot of variance is called the standard deviation $\sigma $ and the ratio of standard deviation to mean $\overline{x}$ is called coefficient variation, a useful quantity in risk analysis. We can alternatively find variance with the formula $\dfrac{1}{n}{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}$.