Solveeit Logo

Question

Question: Find the maximum value of \(\sin x+\cos x\) (using differentiation)....

Find the maximum value of sinx+cosx\sin x+\cos x (using differentiation).

Explanation

Solution

To solve this question we will take the help differentiation. We will differentiate the function with respect to xx and then will equate the function with zero. We again differentiate the function to check whether the value xx is positive or negative. If double differentiation value is positive it means the function is minimum at that value, while if it is negative the function will be maximum at that value of xx.

Complete step by step solution:
This question asks us to find the maximum value of sinx+cosx\sin x+\cos x. Consider the function sinx+cosx\sin x+\cos x . We get f(x)=d(sinx+cosx)dxf'\left( x \right)=\dfrac{d(\sin x+\cos x)}{dx} . Now let us find the derivative of the given function.
f(x)=d(sinx)dx+d(cosx)dxf'\left( x \right)=\dfrac{d(\sin x)}{dx}+\dfrac{d(\cos x)}{dx}…………………………………………………………..(i)
First differentiating sinx\sin x with respect to xx , we get:
dsinxdx=cosx\dfrac{d\sin x}{dx}=\cos x
Now differentiating cosx\cos x with respect to xx , we get:
dcosxdx=sinx\dfrac{d\cos x}{dx}=-\sin x
Putting the values in the formula, we get:
f(x)=cosxsinxf'\left( x \right)=\cos x-\sin x …………………………….(ii)
Equating equation (ii) with zero so that we can get the value of xx, we get:
cosxsinx=0\cos x-\sin x=0
cosx=sinx\Rightarrow \cos x=\sin x
Dividing each term with cosx\cos x in both L.H.S and R.H.S we get:
cosxcosx=sinxcosx\Rightarrow \dfrac{\cos x}{\cos x}=\dfrac{\sin x}{\cos x}
We know that the fraction sinxcosx\dfrac{\sin x}{\cos x} is the same as tanx\tan x. So putting the same in the above equation, we get:
tanx=1\Rightarrow \tan x=1
Now we would be analysing the property of tanx\tan x. In the given question we have got positive value.
Tanx\operatorname{Tan}xis positive in the first and third quadrant. Now on solving x=tan1(1)x={{\tan }^{-1}}\left( 1 \right) we get π4\dfrac{\pi }{4} and 5π4\dfrac{5\pi }{4} as the angles.
Now we will check whether the angle π4\dfrac{\pi }{4} and 5π4\dfrac{5\pi }{4} is maximum or not. For this we will double differentiate the given function or differentiate
f(x)=d(f(x))dxf''\left( x \right)=\dfrac{d\left( f'\left( x \right) \right)}{dx}
d(cosxsinx)dx\Rightarrow \dfrac{d\left( \cos x-\sin x \right)}{dx}
f(x)=sincosx\Rightarrow f''\left( x \right)=-\sin -\cos x …………………………… (iii)
Putting the value π4\dfrac{\pi }{4} in the equation (iii) we get:
sinπ4cosπ4\Rightarrow -\sin \dfrac{\pi }{4}-\cos \dfrac{\pi }{4}
Value of sinπ4\sin \dfrac{\pi }{4} and cosπ4\cos \dfrac{\pi }{4} is 12\dfrac{1}{\sqrt{2}}
1212\Rightarrow -\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}
22\Rightarrow -\dfrac{2}{\sqrt{2}}
2<0\Rightarrow -\sqrt{2}<0
Since the value turned out to be negative, so at π4\dfrac{\pi }{4} the function is maximum.
Putting 5π4\dfrac{5\pi }{4} in place of the anglexxin equation (iii), to check whether the function is maximum or not:
sin5π4cos5π4\Rightarrow -\sin \dfrac{5\pi }{4}-\cos \dfrac{5\pi }{4}
Now, 5π4\dfrac{5\pi }{4} lies in the third quadrant, both the function sinx\sin x and cosx\cos x will be negative in the third quadrant. So the value of sin5π4\sin \dfrac{5\pi }{4} and cos5π4\cos \dfrac{5\pi }{4} is 12\dfrac{-1}{\sqrt{2}} . On putting the value :(12)(12)\Rightarrow -\left( -\dfrac{1}{\sqrt{2}} \right)-\left( -\dfrac{1}{\sqrt{2}} \right)
12+12\Rightarrow \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}
2>0\Rightarrow \sqrt{2}>0
Since the value is positive for double differentiation of the function it means the function is minimum at angle 5π4\dfrac{5\pi }{4} .
We will put π4\dfrac{\pi }{4} in the main function sinx+cosx\sin x+\cos x to find the maximum value. On putting the value we get:
sinπ4+cosπ4\Rightarrow \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4}
12+12\Rightarrow \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}
2\Rightarrow \sqrt{2}

\therefore The maximum value of sinx+cosx\sin x+\cos x is 2\sqrt{2}.

Note: To solve this question we should know the values of the angles of function tanπ4,\tan \dfrac{\pi }{4}, sinπ4\sin \dfrac{\pi }{4} cosπ4\cos \dfrac{\pi }{4} from trigonometric ratio table. Note that there are many more values of θ\theta for which tanθ=1\tan \theta =1. We should know in which quadrant does the trigonometric function give negative or positive value.