Solveeit Logo

Question

Mathematics Question on Application of derivatives

Find the maximum value of f(x)=sin(sinx)f(x) = sin(sinx) for all xRx \in R

A

sin1-sin \,1

B

sin6sin \,6

C

sin1sin \,1

D

sin3-sin \,3

Answer

sin1sin \,1

Explanation

Solution

We have f(x)=sin(sinx)f(x) = sin\,(sin\,x), xRx \in R Now, 1sinx1-1 \le sin \,x \le 1 for all xRx \in R sin(1)sin(sinx)sin1\Rightarrow sin \left(-1\right) \le sin\left(sinx\right) \le sin \,1 for all xRx \in R [sinx\because sin\, x is an increasing function on [1,1]\left[-1,1 \right]] sin1f(x)sin1\Rightarrow - sin\, 1 \le f\left(x\right) \le sin\, 1 for all xRx \in R This shows that the maximum value of f(x)f\left(x\right) is sin1sin \,1.