Solveeit Logo

Question

Mathematics Question on Application of derivatives

Find the maximum profit that a company can make, if the profit function is given by P(x)=41+24x18x2P(x) = 41 + 24x - 18x^2.

A

2525

B

4343

C

6262

D

4949

Answer

4949

Explanation

Solution

We have, P(x)=41+24x18x2P(x) = 41 + 24x - 1 8x^2 dP(x)dx=2436x\Rightarrow \frac{dP\left(x\right)}{dx} = 24 - 36x and d2P(x)dx2=36\frac{d^{2}P\left(x\right)}{dx^{2}} = -36 For maximum or minimum, we must have dP(x)dx=0\Rightarrow \frac{dP\left(x\right)}{dx} = 0 2436x=0\Rightarrow 24 - 36x =0 x=23\Rightarrow x = \frac{2}{3} Also, (d2P(x)dx2)x=23=36<0\left(\frac{d^{2}P\left(x\right)}{dx^{2}}\right)_{x = \frac{2}{3}} = -36 < 0. So, profit is maximum when x=23x = \frac{2}{3} . Maximum profit = (Value of P(x)P\left(x\right) at x=23x = \frac{2}{3}) =41+24×(23)18(23)2= 41+24 \times \left(\frac{2}{3}\right) - 18 \left(\frac{2}{3}\right)^{2} =49= 49