Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find the maximum area of an isosceles triangle inscribed in the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 with its vertex at one end of the major axis.

Answer

Isosceles triangle inscribed in the ellipse x2/a2+y2/b2=1

The given ellipse is x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
Let the major axis be along the x−axis.
Let ABC be the triangle inscribed in the ellipse where vertex C is at (a,0).
Since the ellipse is symmetrical with respect to the x−axis and y−axis, we can assume the coordinates of A to be (x1,y1)(−x_1,y_1) and the coordinates of B to be (x1,y1)(−x_1,−y_1).
Now, we have y1=±baa2x12y_1=±\frac{b}{a}\sqrt{a^2-x^2_1}
∴Coordinates of A are (x1,baa2x12)(-x_1,\frac{b}{a}\sqrt{a^2-x^2_1}) and the coordinates of B are
(x1,baa2x12)(-x_1,\frac{b}{a}\sqrt{a^2-x^2_1})
As the point (x1,y1)(x_1,y_1) lies on the ellipse, the area of triangle ABC(A) is given by,
A=12a(2baa2x12)+(x1)A=\frac{1}{2}|a(\frac{2b}{a}\sqrt{a^2-x^2_1})+(-x_1) (baa2x12)+(x1)(baa2x12)+(x1)(\frac{b}{a}\sqrt{a^2-x^2_1})+(-x_1)(\frac{b}{a}\sqrt{a^2-x^2_1})+(-x_1)
A=ba2x12+x1a2x12...(1)⇒A=b\sqrt{a^2-x_1^2}+x_1\sqrt{a^2-x_1^2} ...(1)
∴\frac{dA}{dx_1}$$=-\frac{2x_1b}{2\sqrt{a^2-x^2_1}}+\frac{b}{a}{\sqrt{a^2-x^2_1}}-\frac{2bx^2_1}{a2\sqrt{a^2-x^2_1}}
=baa2x12[x1a+(a2x12)x12]=\frac{b}{a\sqrt{a^2-x_1^2}}[-x_1a+(a^2-x_1^2)-x_1^2]
=b(2x12x1a+a2)aa2x12=\frac{b(-2x_1^2-x_1a+a^2)}{a\sqrt{a^2-x_1^2}}

Now,dAdx1=0\frac{dA}{dx_1}=0
2x12x1a+a2=0⇒-2x_1^2-x_1a+a^2=0
x1=a±a24(2)(a2)2(2)⇒x_1=\frac{a±\sqrt{a^2-4(-2)(a^2)}}{2(-2)}
=a±9a24=\frac{a±\sqrt{9a^2}}{-4}
=a±3a4=\frac{a±3a}{-4}
x1=a,a2⇒x_1=-a,\frac{a}{2}
But, x1x_1 cannot be equal to a.
x1=a2y1=baa2a24=ba2a=3=3b2∴x_1=\frac{a}{2}⇒y_1=\frac{b}{a}\sqrt{a^2-\frac{a^2}{4}}=\frac{ba}{2a}=\sqrt3=\frac{\sqrt{3b}}{2}

Nowd2Adx12\frac{d^2A}{dx^2_1}=\frac{b}{a}$$\bigg[\frac{\sqrt{a^2-x_1^2}(-4x_1-a)-(-2x^2_1-x_1a+a^2)\frac{(-2x_1)}{\sqrt{a^2-x^2_1}}}{a^2-x^2_1}\bigg]

=ba[a2x12(4x1a)+x1(2x12x1a+a2)(a2x12)32]=\frac{b}{a}[\frac{a^2-x^2_1(-4x_1-a)+x_1-(-2x^2_1-x_1a+a^2)}{(a^2-x_1^2)^{\frac{3}{2}}}]
=ba2x33a2xa3(a2x12)32=\frac{b}{a}\frac{2x^3-3a^2x-a^3}{(a^2-x^2_1)^\frac{3}{2}}

Also, when x1=a2x_1=\frac{a}{2},,then
d2Adx12=ba[2a383a32a3(3a24)32]\frac{d^2A}{dx^2_1}=\frac{b}{a}\bigg[\frac{\frac{2a3}{8}-3\frac{a^3}{2}-a^3}{(\frac{3a^2}{4})^\frac{3}{2}}\bigg]
=ba[94a3(3a22)32]<0=\frac{-b}{a}\bigg[\frac{\frac{9}{4}a^3}{(\frac{3a^2}{2})^{\frac{3}{2}}}\bigg]<0
Thus, the area is the maximum when x1=a2.x_1=\frac{a}{2}.
∴ Maximum area of the triangle is given by,
A=ba2a24+(a2)a2a24A=b\sqrt{a^2-\frac{a^2}{4}}+(\frac{a}{2})\sqrt{a^2-\frac{a^2}{4}}
=ab32+(a2)ba×a32=ab\frac{\sqrt3}{2}+(\frac{a}{2})\frac{b}{a}\times\frac{a\sqrt3}{2}
=ab32+ab34=334ab=\frac{ab√3}{2}+\frac{ab√3}{4}=\frac{3√3}{4}ab