Question
Mathematics Question on Applications of Derivatives
Find the maximum area of an isosceles triangle inscribed in the ellipse a2x2+b2y2=1 with its vertex at one end of the major axis.
The given ellipse is a2x2+b2y2=1
Let the major axis be along the x−axis.
Let ABC be the triangle inscribed in the ellipse where vertex C is at (a,0).
Since the ellipse is symmetrical with respect to the x−axis and y−axis, we can assume the coordinates of A to be (−x1,y1) and the coordinates of B to be (−x1,−y1).
Now, we have y1=±aba2−x12
∴Coordinates of A are (−x1,aba2−x12) and the coordinates of B are
(−x1,aba2−x12)
As the point (x1,y1) lies on the ellipse, the area of triangle ABC(A) is given by,
A=21∣a(a2ba2−x12)+(−x1) (aba2−x12)+(−x1)(aba2−x12)+(−x1)
⇒A=ba2−x12+x1a2−x12...(1)
∴\frac{dA}{dx_1}$$=-\frac{2x_1b}{2\sqrt{a^2-x^2_1}}+\frac{b}{a}{\sqrt{a^2-x^2_1}}-\frac{2bx^2_1}{a2\sqrt{a^2-x^2_1}}
=aa2−x12b[−x1a+(a2−x12)−x12]
=aa2−x12b(−2x12−x1a+a2)
Now,dx1dA=0
⇒−2x12−x1a+a2=0
⇒x1=2(−2)a±a2−4(−2)(a2)
=−4a±9a2
=−4a±3a
⇒x1=−a,2a
But, x1 cannot be equal to a.
∴x1=2a⇒y1=aba2−4a2=2aba=3=23b
Nowdx12d2A=\frac{b}{a}$$\bigg[\frac{\sqrt{a^2-x_1^2}(-4x_1-a)-(-2x^2_1-x_1a+a^2)\frac{(-2x_1)}{\sqrt{a^2-x^2_1}}}{a^2-x^2_1}\bigg]
=ab[(a2−x12)23a2−x12(−4x1−a)+x1−(−2x12−x1a+a2)]
=ab(a2−x12)232x3−3a2x−a3
Also, when x1=2a,,then
dx12d2A=ab[(43a2)2382a3−32a3−a3]
=a−b[(23a2)2349a3]<0
Thus, the area is the maximum when x1=2a.
∴ Maximum area of the triangle is given by,
A=ba2−4a2+(2a)a2−4a2
=ab23+(2a)ab×2a3
=2ab√3+4ab√3=43√3ab