Solveeit Logo

Question

Question: Find the maximum and minimum values of \( x + \sin 2x \) on \( \left[ {0,2\pi } \right] \)...

Find the maximum and minimum values of x+sin2xx + \sin 2x on [0,2π]\left[ {0,2\pi } \right]

Explanation

Solution

Hint : Consider the given expression as a function and then find the differentiation of that function to get the value of x. And get the values of x within the given range. After getting the values of x, substitute them in the given expression and get its maximum and minimum value.

Complete step-by-step answer :
We are given an expression x+sin2xx + \sin 2x and we have to find its maximum value and minimum value within the range [0,2π]\left[ {0,2\pi } \right]
x+sin2xx + \sin 2x is in terms of the variable x.
Let x+sin2xx + \sin 2x be a function f(x)f\left( x \right)
f(x)=x+sin2xf\left( x \right) = x + \sin 2x
Now we are finding the differentiation of the function f(x)f\left( x \right) with respect to x to get the value of x.
ddx(f(x))=ddx(x+sin2x) f1(x)=ddxx+ddxsin2x f1(x)=1+2cos2x (dxdx=1,ddx(sinnx)=ncosnx)  \Rightarrow \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {x + \sin 2x} \right) \\\ \Rightarrow {f^1}\left( x \right) = \dfrac{d}{{dx}}x + \dfrac{d}{{dx}}\sin 2x \\\ \Rightarrow {f^1}\left( x \right) = 1 + 2\cos 2x \\\ \left( {\because \dfrac{{dx}}{{dx}} = 1,\dfrac{d}{{dx}}\left( {\sin nx} \right) = n\cos nx} \right) \\\
Where f1(x){f^1}\left( x \right) is the derivative function of f(x)f\left( x \right)
When the value of f1(x){f^1}\left( x \right) is 0 then the value of x will be
f1(x)=1+2cos2x=0 1+2cos2x=0 2cos2x=1 cos2x=12  {f^1}\left( x \right) = 1 + 2\cos 2x = 0 \\\ \Rightarrow 1 + 2\cos 2x = 0 \\\ \Rightarrow 2\cos 2x = - 1 \\\ \Rightarrow \cos 2x = \dfrac{{ - 1}}{2} \\\
The value of cosine function is 12\dfrac{1}{2} only when the angle is 60 degrees or π3\dfrac{\pi }{3}
cos2x=cosπ3 cosπ3=cos(ππ3)=cos2π3 cos2x=cos2π3 2x=2nπ±2π3,nZ x=nπ±2π3,nZ  \Rightarrow \cos 2x = - \cos \dfrac{\pi }{3} \\\ \Rightarrow - \cos \dfrac{\pi }{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = \cos \dfrac{{2\pi }}{3} \\\ \Rightarrow \cos 2x = \cos \dfrac{{2\pi }}{3} \\\ \Rightarrow 2x = 2n\pi \pm \dfrac{{2\pi }}{3},n \in Z \\\ \Rightarrow x = n\pi \pm \dfrac{{2\pi }}{3},n \in Z \\\
We have got the expression to calculate the value of x, and the values of x must be in the range [0,2π]\left[ {0,2\pi } \right]
So the values of x will be 0,π3,2π3,4π3,5π3,2π0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi
Now, substitute the values of x in the function f(x)=x+sin2xf\left( x \right) = x + \sin 2x to find the function values.
x=0,f(0)=0+sin2(0)=0 x=π3,f(π3)=π3+sin2π3=π3+32 x=2π3,f(2π3)=2π3+sin2(2π3)=2π332 x=4π3,f(4π3)=4π3+sin2(4π3)=4π3+32 x=5π3,f(5π3)=5π3+sin2(5π3)=5π332 x=2π,f(2π)=2π+sin2(2π)=2π+0=2π  x = 0,f\left( 0 \right) = 0 + \sin 2\left( 0 \right) = 0 \\\ x = \dfrac{\pi }{3},f\left( {\dfrac{\pi }{3}} \right) = \dfrac{\pi }{3} + \sin 2\dfrac{\pi }{3} = \dfrac{\pi }{3} + \dfrac{{\sqrt 3 }}{2} \\\ x = \dfrac{{2\pi }}{3},f\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3} + \sin 2\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3} - \dfrac{{\sqrt 3 }}{2} \\\ x = \dfrac{{4\pi }}{3},f\left( {\dfrac{{4\pi }}{3}} \right) = \dfrac{{4\pi }}{3} + \sin 2\left( {\dfrac{{4\pi }}{3}} \right) = \dfrac{{4\pi }}{3} + \dfrac{{\sqrt 3 }}{2} \\\ x = \dfrac{{5\pi }}{3},f\left( {\dfrac{{5\pi }}{3}} \right) = \dfrac{{5\pi }}{3} + \sin 2\left( {\dfrac{{5\pi }}{3}} \right) = \dfrac{{5\pi }}{3} - \dfrac{{\sqrt 3 }}{2} \\\ x = 2\pi ,f\left( {2\pi } \right) = 2\pi + \sin 2\left( {2\pi } \right) = 2\pi + 0 = 2\pi \\\
Out of all the values we got of the function f(x)=x+sin2xf\left( x \right) = x + \sin 2x , 0 is the minimum value at x is equal to 0 and 2π2\pi is the maximum value at x is equal to 2π2\pi

Note : The differentiation of sine function will be a positive cosine function but the differentiation of a cosine function will be a negative sine function. Be careful with the signs of the functions. The value of a trigonometric function repeats after a full circle or 2π2\pi radians.