Question
Mathematics Question on Applications of Derivatives
Find the maximum and minimum values of x+1sin2x on [0,2π].
Answer
Letf(x)=x+sin2x.
f′(x)=1+2cos2x
Now,f′(x)=0
⇒cos2x=$$-\frac{1}{2}=$$-cos\frac{\pi}{3}
=cos({\pi}-\frac{\pi}{3})$$=cos\frac{2\pi}{3}
2x=2π±32π n∈Z
⇒$$x=n\pi\pm\frac{\pi}{3},n∈Z
⇒x=3π,32π,34π,35π∈[0,2π]
Then, we evaluate the value of f at critical points x=3π,32π,34π,35π and at the end points of the interval [0,2π].
f(3π)=3π+sin32π=3π+33
f(32π)=32π+sin34π=32π−33
f(34π)=34π+sin38π=34π+33
f(35π)=35π+sin310π=35π−33
f(0)=0+sin0=0
f(2π)=2π+sin4π=2π+0=2π
Hence, we can conclude that the absolute maximum value of f(x) in the interval [0,2π] is 2π occurring at x=2π and the absolute minimum value of f(x) in the interval [0,2π] is 0 occurring at x=0