Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find the maximum and minimum values of x+1sin2xx+1 sin2x on [0,2π][0,2\pi].

Answer

Letf(x)=x+sin2x. f(x)=x+sin2x.

f(x)=1+2cos2xf'(x)=1+2cos2x

Now,f(x)=0f'(x)=0
cos2x=$$-\frac{1}{2}=$$-cos\frac{\pi}{3}

=cos({\pi}-\frac{\pi}{3})$$=cos\frac{2\pi}{3}

2x=2π±2π32x= 2\pi\pm\frac{2\pi}{3} nZn∈Z

⇒$$x=n\pi\pm\frac{\pi}{3},n∈Z

x=π3,2π3,4π3,5π3[0,2π]⇒x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3} ∈[0,2\pi]

Then, we evaluate the value of f at critical points x=π3,2π3,4π3,5π3x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3} and at the end points of the interval [0,2π][0,2\pi].

f(π3)=π3+sin2π3=π3+33f(\frac{\pi}{3})=\frac{\pi}{3}+sin\frac{2\pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{3}
f(2π3)=2π3+sin4π3=2π333f(\frac{2\pi}{3})=\frac{2\pi}{3}+sin\frac{4\pi}{3}=\frac{2\pi}{3}-\frac{\sqrt{3}}{3}
f(4π3)=4π3+sin8π3=4π3+33f(\frac{4\pi}{3})=\frac{4\pi}{3}+sin\frac{8\pi}{3}=\frac{4\pi}{3}+\frac{\sqrt{3}}{3}
f(5π3)=5π3+sin10π3=5π333f(\frac{5\pi}{3})=\frac{5\pi}{3}+sin\frac{10\pi}{3}=\frac{5\pi}{3}-\frac{\sqrt{3}}{3}
f(0)=0+sin0=0f(0)=0+sin0=0

f(2π)=2π+sin4π=2π+0=2πf(2{\pi})=2\pi+sin 4\pi=2\pi+0=2\pi

Hence, we can conclude that the absolute maximum value of f(x)f(x) in the interval [0,2π][0, 2\pi] is 2π2\pi occurring at x=2πx=2\pi and the absolute minimum value of f(x)f(x) in the interval [0,2π][0, 2\pi] is 0 occurring at x=0x=0