Solveeit Logo

Question

Question: Find the maximum and minimum values of the trigonometric expression \(5\cos \theta +3\sin \left( \df...

Find the maximum and minimum values of the trigonometric expression 5cosθ+3sin(π6θ)+45\cos \theta +3\sin \left( \dfrac{\pi }{6}-\theta \right)+4

Explanation

Solution

Hint: Start by using the formula of sin(A-B). Then divide and multiply the expression given in the question by 7 and take sinα=1314\sin \alpha =\dfrac{13}{14} . Also, use the fact that the range of the sine function is [-1,1] and is defined for all real numbers.

Complete step-by-step answer:
Now we will start with the simplification of the expression that is given in the question.
5cosθ+3sin(π6θ)+45\cos \theta +3\sin \left( \dfrac{\pi }{6}-\theta \right)+4
Using the formula sin(A-B)=sinAcosB-cosAsinB.
5cosθ+3sinπ6cosθ3cosπ6sinθ+45\cos \theta +3\sin \dfrac{\pi }{6}\cos \theta -3\cos \dfrac{\pi }{6}\sin \theta +4
We know that sinπ6=12 and cosπ6=32\sin \dfrac{\pi }{6}=\dfrac{1}{2}\text{ and cos}\dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2} . So, our expression becomes:
5cosθ+32cosθ332sinθ+45\cos \theta +\dfrac{3}{2}\cos \theta -\dfrac{3\sqrt{3}}{2}\sin \theta +4
132cosθ332sinθ+4\dfrac{13}{2}\cos \theta -\dfrac{3\sqrt{3}}{2}\sin \theta +4
Now we divide and multiply the expression by 7. On doing so, we get
14(1314cosθ3314sinθ)+414\left( \dfrac{13}{14}\cos \theta -\dfrac{3\sqrt{3}}{14}\sin \theta \right)+4
We take 1314\dfrac{13}{14} to be equal to sinαsin\alpha , then we cosα\cos \alpha can be calculated as:
sin2α+cos2α=1 cosα=1sin2α=1169196=3314 \begin{aligned} & {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1 \\\ & \Rightarrow \cos \alpha =\sqrt{1-si{{n}^{2}}\alpha }=\sqrt{1-\dfrac{169}{196}}=\dfrac{3\sqrt{3}}{14} \\\ \end{aligned}
Therefore, using the above assumption and result in the expression 14(1314cosθ3314sinθ)+414\left( \dfrac{13}{14}\cos \theta -\dfrac{3\sqrt{3}}{14}\sin \theta \right)+4 , we get
14(1314cosθ3314sinθ)+414\left( \dfrac{13}{14}\cos \theta -\dfrac{3\sqrt{3}}{14}\sin \theta \right)+4
=14(cosθsinαsinθcosα)+4=14\left( cos\theta sin\alpha -\sin \theta \cos \alpha \right)+4
Now using the formula sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B , our expression becomes:
=14sin(αθ)+4=14\sin \left( \alpha -\theta \right)+4
Now we let αθ=β\alpha -\theta =\beta . Therefore, we get our final expression to be 14sin(αθ)+414\sin \left( \alpha -\theta \right)+4 .
We know that the sine function can have a maximum value of 1 and minimum value of -1. Also, our final expression is maximum when sinβ\sin \beta is maximum and minimum when sinβ\sin \beta is minimum. The expression is minimum.
Therefore, the maximum and minimum value of the expression 5cosθ+3sin(π6θ)+45\cos \theta +3\sin \left( \dfrac{\pi }{6}-\theta \right)+4 is 18 and -10, respectively.

Note: If you want, you can directly remember that the maximum and minimum value of the expression asinθbcosθa\sin \theta -b\cos \theta is a2+b2 and a2+b2\sqrt{{{a}^{2}}+{{b}^{2}}}\text{ and }-\sqrt{{{a}^{2}}+{{b}^{2}}} , respectively. Also, for solving the above question, you can use the method of derivative, but that would be difficult to solve and would require a good hold on the concepts of inverse trigonometric functions.