Solveeit Logo

Question

Question: Find the maximum and minimum values of \({\cos ^6}\theta + {\sin ^6}\theta \) respectively. \(\lef...

Find the maximum and minimum values of cos6θ+sin6θ{\cos ^6}\theta + {\sin ^6}\theta respectively.
(a) 1 and 14\left( a \right){\text{ 1 and }}\dfrac{1}{4}
(b) 1 and 0\left( b \right){\text{ 1 and 0}}
(c) 2 and 0\left( c \right){\text{ 2 and 0}}
(d) 1 and 12(d){\text{ 1 and }}\dfrac{1}{2}

Explanation

Solution

Hint: First simplify the expression using various algebraic & trigonometric identities & then use the range of the trigonometric function in the simplified form.

Complete step-by-step answer:
We have to find the maximum and minimum value of cos6θ+sin6θ{\cos ^6}\theta + {\sin ^6}\theta .
So let’s simplify it first,
Let f(θ)=cos6θ+sin6θf(\theta ) = {\cos ^6}\theta + {\sin ^6}\theta .
So we can also write this as
f(θ)=(sin2θ)3+(cos2θ)3f(\theta ) = {\left( {si{n^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3}
Now using a3+b3=(a+b)(a2+b2ab){a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right), we have
f(θ)=(sin2θ+cos2θ)(sin4θ+cos4θsin2θcos2θ)f(\theta ) = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)
Using sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1…………………………… (1)
f(θ)=(sin4θ+cos4θsin2θcos2θ)f(\theta ) = \left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)
Now we can write (sin4θ+cos4θsin2θcos2θ)=(sin2θ+cos2θ)23sin2θcos2θ\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta
So we can write f(θ)=(sin2θ+cos2θ)23sin2θcos2θf(\theta ) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta
Now using equation 1 we have
f(θ)=13sin2θcos2θf(\theta ) = 1 - 3{\sin ^2}\theta {\cos ^2}\theta
We can write this as
f(θ)=134×4sin2θcos2θf(\theta ) = 1 - \dfrac{3}{4} \times 4{\sin ^2}\theta {\cos ^2}\theta
Now using 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta
We have f(θ)=34(sin2θ)2f(\theta ) = \dfrac{3}{4}{\left( {\sin 2\theta } \right)^2}
Using half angle formulae, (1cos4θ)=2sin22θ\left( {1 - \cos 4\theta } \right) = 2{\sin ^2}2\theta
138(1cos4θ)\Rightarrow 1 - \dfrac{3}{8}\left( {1 - \cos 4\theta } \right)
Let’s simplify it further we get 138+38cos4θ1 - \dfrac{3}{8} + \dfrac{3}{8}\cos 4\theta
Hence f(θ)=58+38cos4θf(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta ……………………………. (2)
Now we know that 1 cos4θ  1 - 1 \leqslant {\text{ cos4}}\theta {\text{ }} \leqslant {\text{ 1}} (maximum and minimum inbound of cos x)
38 38cos4θ  38\Rightarrow - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant {\text{ }}\dfrac{3}{8}
5838 58+38cos4θ 58+38\Rightarrow \dfrac{5}{8} - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{5}{8} + \dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant \dfrac{5}{8} + \dfrac{3}{8} (Adding 58 \dfrac{5}{{8{\text{ }}}}to all sides of inequality)
Now using equation 2 we know that f(θ)=58+38cos4θf(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta
Hence
14f(θ)1\dfrac{1}{4} \leqslant f(\theta ) \leqslant 1
Thus the minimum value of the required quantity is 14\dfrac{1}{4}and maximum value is 1
So option (a) is correct.

Note: Whenever we have to solve such problems, try to simplify as much as possible in order to reach the simplest form of expression, then use the min and max inbounds of the simplified part to reach up to the solution.