Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find the maximum and minimum values of 6sinxcosx+4cos2x6sinx\, cosx + 4cos2x.

A

55, 5-5

B

66, 6-6

C

44, 4-4

D

22, 2-2

Answer

55, 5-5

Explanation

Solution

We have, 6sinxcosx+4cos2x=3sin2x+4cos2x6sinx \,cosx + 4cos2x = 3sin2x + 4cos2x which is of the form asinθ+bcosθasin\theta + bcos\theta. 32+423sin2x+4cos2x32+42\therefore -\sqrt{3^{2}+4^{2}} \le3sin2x+4cos2x \le\sqrt{3^{2}+4^{2}} [a2+b2asinθ+bcosθa2+b2]\left[\because -\sqrt{a^{2}+b^{2}} \,\le asin\theta+bcos\theta \le\sqrt{a^{2}+b^{2}}\right] 53sin2x+4cos2x5\Rightarrow -5 \le3sin2x+4cos2x \le5 Thus, maximum and minimum values of 6sinxcosx+4cos2x6sinx\, cosx + 4cos2x are 55 and 5-5, respectively.