Question
Mathematics Question on Trigonometric Functions
Find the maximum and minimum values of 6sinxcosx+4cos2x.
A
5, −5
B
6, −6
C
4, −4
D
2, −2
Answer
5, −5
Explanation
Solution
We have, 6sinxcosx+4cos2x=3sin2x+4cos2x which is of the form asinθ+bcosθ. ∴−32+42≤3sin2x+4cos2x≤32+42 [∵−a2+b2≤asinθ+bcosθ≤a2+b2] ⇒−5≤3sin2x+4cos2x≤5 Thus, maximum and minimum values of 6sinxcosx+4cos2x are 5 and −5, respectively.