Solveeit Logo

Question

Question: Find the maximum and minimum value of the following expression \({{\left( x-2 \right)}^{6}}{{\left( ...

Find the maximum and minimum value of the following expression (x2)6(x3)5{{\left( x-2 \right)}^{6}}{{\left( x-3 \right)}^{5}}

Explanation

Solution

Now we know that for a function f(x) the conditions for extrema is f(x)=0f'\left( x \right)=0. Now this extrema can be a minimum or a maximum. Now we will substitute the value of x in f(x). The x which gives greater value is maximum the x which gives lesser value is minimum.

Complete step by step answer:
Now consider the given function f(x)=(x2)6(x3)5f\left( x \right)={{\left( x-2 \right)}^{6}}{{\left( x-3 \right)}^{5}}.
Now we know that (f(x).g(x))=f(x)g(x)+f(x)g(x)\left( f\left( x \right).g\left( x \right) \right)'=f'\left( x \right)g\left( x \right)+f\left( x \right)g'\left( x \right)
Hence with this formula if we differentiate the above expression we get.
f(x)=d(x2)6dx(x3)5+(x2)6d(x3)5dx.........................(1)f'\left( x \right)=\dfrac{d{{\left( x-2 \right)}^{6}}}{dx}{{\left( x-3 \right)}^{5}}+{{\left( x-2 \right)}^{6}}\dfrac{d{{\left( x-3 \right)}^{5}}}{dx}.........................(1)
Now we know that (f(g(x)))=f(g(x)).g(x)\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)
Hence we have
d(x2)6dx=6(x2)5(1)=6(x2)5\dfrac{d{{\left( x-2 \right)}^{6}}}{dx}=6{{\left( x-2 \right)}^{5}}\left( 1 \right)=6{{\left( x-2 \right)}^{5}} and d(x3)5dx=5(x3)4(1)=5(x3)4\dfrac{d{{\left( x-3 \right)}^{5}}}{dx}=5{{\left( x-3 \right)}^{4}}\left( 1 \right)=5{{\left( x-3 \right)}^{4}}
Now substituting this in equation (1) we get.
f(x)=6(x2)5(x3)5+5(x2)6(x3)4f'\left( x \right)=6{{\left( x-2 \right)}^{5}}{{\left( x-3 \right)}^{5}}+5{{\left( x-2 \right)}^{6}}{{\left( x-3 \right)}^{4}}
Now we will equate this to 0 we get the conditions for extremum.
6(x2)5(x3)5+5(x2)6(x3)4=06{{\left( x-2 \right)}^{5}}{{\left( x-3 \right)}^{5}}+5{{\left( x-2 \right)}^{6}}{{\left( x-3 \right)}^{4}}=0
Now taking (x2)5(x3)4{{\left( x-2 \right)}^{5}}{{\left( x-3 \right)}^{4}} common from each term we get
(x2)5(x3)4[6(x3)+5(x2)]=0 (x2)5(x3)4[6x18+5x10] (x2)5(x3)4[11x28]=0 \begin{aligned} & \Rightarrow {{\left( x-2 \right)}^{5}}{{\left( x-3 \right)}^{4}}\left[ 6\left( x-3 \right)+5\left( x-2 \right) \right]=0 \\\ & \Rightarrow {{\left( x-2 \right)}^{5}}{{\left( x-3 \right)}^{4}}[6x-18+5x-10] \\\ & \Rightarrow {{\left( x-2 \right)}^{5}}{{\left( x-3 \right)}^{4}}\left[ 11x-28 \right]=0 \\\ \end{aligned}
Hence we get f(x)=0f'\left( x \right)=0 for x = 3, x = 2, and x=2811x=\dfrac{28}{11} .
Hence we have the points of extremum are x = 3, x = 2, and x=2811x=\dfrac{28}{11} .
Now let us check the value of function at each points of extrema
We have f(x)=(x2)6(x3)5f\left( x \right)={{\left( x-2 \right)}^{6}}{{\left( x-3 \right)}^{5}}
Hence f(2)=f(3)=0............(2)f\left( 2 \right)=f\left( 3 \right)=0............(2) .
Now we have 2811=2.54\dfrac{28}{11}=2.54
Now we know that 2.54 < 3
Hence we get (2.543)<0\left( 2.54-3 \right) < 0
Now the odd power of a negative number is negative.
Hence (2.543)5<0...............(3){{\left( 2.54-3 \right)}^{5}}<0...............\left( 3 \right)
But we have (2.542)6>0...............(4){{\left( 2.54-2 \right)}^{6}}>0...............\left( 4 \right)
Now we know that (+)×()=()\left( + \right)\times \left( - \right)=\left( - \right) hence we get
(2.543)5(2.542)6<0 f(2.54)<0 f(2811)<0 \begin{aligned} & {{\left( 2.54-3 \right)}^{5}}{{\left( 2.54-2 \right)}^{6}}<0 \\\ & \Rightarrow f\left( 2.54 \right)<0 \\\ & \Rightarrow f\left( \dfrac{28}{11} \right)<0 \\\ \end{aligned}
Now from equation (2) we have that
f(2811)<f(2)f\left( \dfrac{28}{11} \right) < f\left( 2 \right) and f(2811)<f(3)f\left( \dfrac{28}{11} \right) < f\left( 3 \right)

Hence we have maximum at x = 2 and x = 3 and minimum at x = 2811\dfrac{28}{11}

Note: We can also check if the extremum is maximum or minimum by second derivative test. Let us say if x is a point of extremum then if at this x we have f(x)>0f''\left( x \right)>0 then it is a minimum and if f(x)<0f''\left( x \right)<0 then it is a maximum. Hence we can find the maximum and minimum of the given expression.