Question
Mathematics Question on Matrices
Find the matrix X so that X[1 42536]=[−7 2−84−96]
The correct answer is [1\2−20]
It is given that X[1 42536]=[−7 2−84−96]
The matrix given on the R.H.S. of the equation is a 2×3 matrix and the one given on the L.H.S. of the equation is a 2×3 matrix. Therefore, X has to be a 2×2 matrix.
Now, let X=[a\bcd]
Therefore, we have:
[a\bcd][1 42536]=[−7 2−84−96]
⟹[a+4c b+4d2a+5c2b+5d3a+6c3b+6d]=[−7 2−84−96]
Equating the corresponding elements of the two matrices, we have:
a+4c=−7,2a+5c=−8,3a+6c=−9
b+4d=2,2b+5d=4,3b+6d=6
Now a+4c=−7
=⟹a=−7−4c
2a+5c=−8⟹2(−7−4c)+5c=−8
⟹−14−8c+5c=−8
⟹c=−2
so a=−7−4c⟹a=−7−4(−2)=−7+8=1
Now b+4d=2
=⟹b=2−4d
Now 2b+5d=4⟹4−8d+5d=4
⟹−3d=0
⟹d=0
so b=2−4(0)=2
Thus, a=1,b=2,c=−2,d=0
Hence, the required matrix X is [1\2−20]