Solveeit Logo

Question

Question: Find the matrix A satisfying the matrix equation \(\left[ \begin{matrix} 2 & 1 \\\ 3 & 2 \...

Find the matrix A satisfying the matrix equation [21 32 ]A[32 53 ]=[10 01 ]\left[ \begin{matrix} 2 & 1 \\\ 3 & 2 \\\ \end{matrix} \right]A\left[ \begin{matrix} -3 & 2 \\\ 5 & -3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right].

Explanation

Solution

We first need to solve the matrix equation by multiplying the inverse of the matrices X and Y which gives only matrix A on one side. Now we need to find the inverse of the matrix by finding the adjoint of the matrices. We use the inverse matrices and the matrix [10 01 ]\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] to form a multiplication to find the matrix A.

We have been given a matrix equation [21 32 ]A[32 53 ]=[10 01 ]\left[ \begin{matrix} 2 & 1 \\\ 3 & 2 \\\ \end{matrix} \right]A\left[ \begin{matrix} -3 & 2 \\\ 5 & -3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right].
We assume X=[21 32 ]X=\left[ \begin{matrix} 2 & 1 \\\ 3 & 2 \\\ \end{matrix} \right], Y=[32 53 ]Y=\left[ \begin{matrix} -3 & 2 \\\ 5 & -3 \\\ \end{matrix} \right] and Z=[10 01 ]Z=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right].
So, the equation becomes XAY=ZXAY=Z. We need to find the matrix A.

Complete step by step answer:
We first multiply with X1{{X}^{-1}} to get
X1XAY=X1Z IAY=X1Z AY=X1Z \begin{aligned} & {{X}^{-1}}XAY={{X}^{-1}}Z \\\ & \Rightarrow IAY={{X}^{-1}}Z \\\ & \Rightarrow AY={{X}^{-1}}Z \\\ \end{aligned}
We then multiply with Y1{{Y}^{-1}} to get
AY=X1Z AYY1=X1ZY1 AI=X1ZY1 A=X1ZY1 \begin{aligned} & AY={{X}^{-1}}Z \\\ & \Rightarrow AY{{Y}^{-1}}={{X}^{-1}}Z{{Y}^{-1}} \\\ & \Rightarrow AI={{X}^{-1}}Z{{Y}^{-1}} \\\ & \Rightarrow A={{X}^{-1}}Z{{Y}^{-1}} \\\ \end{aligned}
We found the matrix A. We now need to find the inverse matrix of X and Y. For inverse we need to find the adjoint of that matrix divided by its determinant value. So, for matrix M the inverse matrix will be M1=adj(M)M{{M}^{-1}}=\dfrac{adj\left( M \right)}{\left| M \right|}.
In case of X=[21 32 ]X=\left[ \begin{matrix} 2 & 1 \\\ 3 & 2 \\\ \end{matrix} \right], adj(X)=[21 32 ]adj\left( X \right)=\left[ \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right] and X=43=1\left| X \right|=4-3=1.
So, X1=adj(X)X=[21 32 ]{{X}^{-1}}=\dfrac{adj\left( X \right)}{\left| X \right|}=\left[ \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right].
In case of Y=[32 53 ]Y=\left[ \begin{matrix} -3 & 2 \\\ 5 & -3 \\\ \end{matrix} \right], adj(Y)=[32 53 ]adj\left( Y \right)=\left[ \begin{matrix} -3 & -2 \\\ -5 & -3 \\\ \end{matrix} \right] and Y=910=1\left| Y \right|=9-10=-1.
So, Y1=adj(Y)Y=11[32 53 ]=[32 53 ]{{Y}^{-1}}=\dfrac{adj\left( Y \right)}{\left| Y \right|}=\dfrac{1}{-1}\left[ \begin{matrix} -3 & -2 \\\ -5 & -3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 3 & 2 \\\ 5 & 3 \\\ \end{matrix} \right].
Now we need to find multiplication value of A=X1ZY1A={{X}^{-1}}Z{{Y}^{-1}}.
So, A=[21 32 ][10 01 ][32 53 ]A=\left[ \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 3 & 2 \\\ 5 & 3 \\\ \end{matrix} \right]. We do the multiplications one by one from left.
A=[21 32 ][10 01 ][32 53 ]=[2+001 3+00+2 ][32 53 ]=[21 32 ][32 53 ]A=\left[ \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 3 & 2 \\\ 5 & 3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 2+0 & 0-1 \\\ -3+0 & 0+2 \\\ \end{matrix} \right]\left[ \begin{matrix} 3 & 2 \\\ 5 & 3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right]\left[ \begin{matrix} 3 & 2 \\\ 5 & 3 \\\ \end{matrix} \right].
Now we do the second multiplication and get
A=[21 32 ][32 53 ]=[6543 9+106+6 ]=[11 10 ]A=\left[ \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right]\left[ \begin{matrix} 3 & 2 \\\ 5 & 3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 6-5 & 4-3 \\\ -9+10 & -6+6 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 1 \\\ 1 & 0 \\\ \end{matrix} \right].
Therefore, the matrix A is A=[11 10 ]A=\left[ \begin{matrix} 1 & 1 \\\ 1 & 0 \\\ \end{matrix} \right].

Note: The easiest way to remember the adjoint of a (2×2)\left( 2\times 2 \right) matrix is to interchange the position of its diagonal elements and to change the sign of the other two elements. So, if a (2×2)\left( 2\times 2 \right) matrix is A where A=[ab cd ]A=\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right], then adj(A)=[db ca ]adj\left( A \right)=\left[ \begin{matrix} d & -b \\\ -c & a \\\ \end{matrix} \right].