Solveeit Logo

Question

Question: Find the magnetic field at P due to arrangement as shown. ![](https://www.vedantu.com/question-set...

Find the magnetic field at P due to arrangement as shown.

Explanation

Solution

In this question the bended wire arrangement can be considered as a system of two wires which are of semi-infinite length and aligned perpendicular to each other. So, the net magnetic field at Point P{{P}} can be found by superposition Principle i.e. by sum of magnetic fields due to two wires.

Formula used:
(i) B  =μ04πIr(Sinθ1Sinθ2){{B}}\;{{ = }}\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{{I}}}{{{r}}}\left( {{{Sin}}{{{\theta }}_{{1}}}{{ - Sin}}{{{\theta }}_{{2}}}} \right)
Where B{{B}} is magnetic field, μ0{{{\mu }}_{{0}}} is absolute permeability of free space, I{{I}} is amount of current flowing in the conductor, r{{r}} is perpendicular distance from the wire to the observation Point P, θ2{{{\theta }}_{{2}}} is the angle which the line joining Point P to lower end of wire makes with perpendicular line with the conductor/wire and θ1{{{\theta }}_{{1}}} is the angle which same perpendicular distance line makes with the line from point P to upper end of wire.

Complete step by step solution:
(i) Magnetic field due to wire 11 As it is clear from the diagram the wire 11 carries a current I{{I}} a point P{{P}} which is at d{{d}}distance away from its lower end. And to point P{{P}} is given PS  =  dSin45o{{PS}}\;{{ = }}\;{{dSin4}}{{{5}}^{{o}}}
So,
{{PS}}\;{{ = }}\;\dfrac{{{d}}}{{\sqrt {{2}} }}{{\\_\\_\\_}}\left( {{1}} \right)
So, by right hand rule the direction of magnetic field at point P{{P}} due to wire 11 is inward. If B,{{B,}} in magnetic field at point P{{P}} due to wire 11 end PS{{PS}} is normal distance of wire from observation point then,
{{{B}}_{{1}}}\;{{ = }}\;\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{{I}}}{{{{PS}}}}\left( {{{Sin}}{{{\theta }}_{{1}}}{{ - Sin}}{{{\theta }}_{{2}}}} \right)\;{{\\_\\_\\_}}\left( {{2}} \right)
Also, from fig it is clear that θ1=  90o,  θ2=  45o{{{\theta }}_{{1}}}{{ = }}\;{{9}}{{{0}}^{{o}}}{{,}}\;{{{\theta }}_{{2}}}{{ = }}\;{{4}}{{{5}}^{{o}}}
By substituting the values of angles and PS{{PS}} in equation (2)\left( 2 \right)
We get
B1=  μ04π2Id(Sin90oSin45o){{{B}}_{{1}}}{{ = }}\;\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{\sqrt {{2}} {{I}}}}{{{d}}}\left( {{{Sin9}}{{{0}}^{{o}}}{{ - Sin4}}{{{5}}^{{o}}}} \right)
{{{B}}_{{1}}}\;{{ = }}\;\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{\sqrt {{2}} {{I}}}}{{{d}}}\left[ {{{1 - }}\dfrac{{{1}}}{{\sqrt {{2}} }}} \right]\;{{Inward}}\;{{\\_\\_\\_}}\left( 3 \right)

(ii) Magnetic field due to wire 22 :
In the diagram PQ{{PQ}} is perpendicular distance of Point P{{P}} from:
Direction of current

PQ  =  dSin45o{{PQ}}\;{{ = }}\;{{dSin4}}{{{5}}^{{o}}}
Here θ1{{{\theta }}_{{1}}} is 90{90^ \circ } and
So, if B2{{{B}}_{{2}}} is magnetic field at P{{P}} due to wire 22 directing inwards by right hand rule is given by
{{{B}}_{{2}}}\;{{ = }}\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{{I}}}{{{{PQ}}}}\left( {{{Sin}}{{{\theta }}_{{1}}}{{ - Sin}}{{{\theta }}_{{2}}}} \right)\;{{\\_\\_\\_}}\left( {{5}} \right)

By substituting values of PQ{{PQ}} and θ1,θ2{{{\theta }}_{{1}}}{{,}}{{{\theta }}_{{2}}} in(5)\left( 5 \right) we get
B2  =μ04π2Id(Sin90oSin45o){{{B}}_{{2}}}\;{{ = }}\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{\sqrt {{2}} {{I}}}}{{{d}}}\left( {{{Sin9}}{{{0}}^{{o}}}{{ - Sin4}}{{{5}}^{{o}}}} \right)
{{{B}}_{{2}}}\;{{ = }}\;\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{\sqrt {{2}} {{I}}}}{{{d}}}\left( {{{1 - }}\dfrac{{{1}}}{{\sqrt {{2}} }}} \right)\;{{inwards}}\;{{\\_\\_\\_}}\left( {{6}} \right)
By equation (5)\left( 5 \right) and (6),\left( 6 \right), net magnetic field at P{{P}} is given by
B  =  B1+B2{{B}}\;{{ = }}\;{{{B}}_{{1}}}{{ + }}{{{B}}_{{2}}}
B  =  μ04π.2Id(112)+  μ04π2Id(112){{B}}\;{{ = }}\;\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}{{.}}\dfrac{{\sqrt {{2}} {{I}}}}{{{d}}}\left( {{{1 - }}\dfrac{{{1}}}{{\sqrt {{2}} }}} \right){{ + }}\;\dfrac{{{{{\mu }}_{{0}}}}}{{{{4\pi }}}}\dfrac{{\sqrt {{2}} {{I}}}}{{{d}}}\left( {{{1 - }}\dfrac{{{1}}}{{\sqrt {{2}} }}} \right)
B  =  μ02πId(112){{B}}\;{{ = }}\;\dfrac{{{{{\mu }}_{{0}}}}}{{\sqrt {{2}} {{\pi }}}}\dfrac{{{I}}}{{{d}}}\left( {{{1 - }}\dfrac{{{1}}}{{\sqrt {{2}} }}} \right)

Note: The distance r{{'r'}} which is used in the formula is perpendicular distance. So if it is not given then first find perpendicular distance by means of resolution of vectors and then substitute in the relation. The superposition principle is also known as superposition property. It states that, for all linear systems, the net response caused by two or more fields/forces is the sum of the responses that would have been caused by each stimulus individually.