Question
Question: Find the Maclaurin series expansion for the given expression, \(\dfrac{1}{{(1 - {x^2})}}\)...
Find the Maclaurin series expansion for the given expression, (1−x2)1
Solution
These kinds of questions are memory-based questions. Revive the correct formula of the Maclaurin series. Solve individually to avoid any mistakes in the later steps of assembling the expansion. Put the appropriate values in the expansion and get the correct answer.
Complete step by step solution:
The formula for the Taylor series expansion is,
$$$$$\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(a)}}{{n!}}{{(x - a)}^n}}
where a=0 for the Maclaurin series expansion.
If we expand the above formula then it would look like,
$$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{f''''(0)}}{{4!}}{x^4} + .... - - - (i)$$ \Rightarrowf\left( x \right){\text{ }} = \dfrac{1}{{(1 - {x^2})}}\Rightarrowf'\left( x \right){\text{ }} = \dfrac{{ - 2}}{{{{(1 + x)}^3}}}$$
$\Rightarrow f''\left( x \right){\text{ }} = \dfrac{6}{{{{(1 + x)}^4}}}
$\Rightarrow$$$f'''\left( x \right){\text{ }} = \dfrac{{ - 24}}{{{{(1 + x)}^5}}}
⇒f′′′′(x) =(1+x)6120
Putting the required values in place of x,
f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{{2!}}{x^2} + \dfrac{{ - 24}}{{3!}}{x^3} + \dfrac{{120}}{{4!}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{{\left( {2 \times 1} \right)}}{x^2} + \dfrac{{ - 24}}{{\left( {3 \times 2 \times 1} \right)}}{x^3} + \dfrac{{120}}{{\left( {4 \times 3 \times 2 \times 1} \right)}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{2}{x^2} + \dfrac{{ - 24}}{6}{x^3} + \dfrac{{120}}{{24}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 - 2x + 3{x^2} - 4{x^3} + 5{x^4} + .... \\