Solveeit Logo

Question

Question: Find the locus of the point of intersection of two straight lines \[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\]...

Find the locus of the point of intersection of two straight lines txayb+t=0\dfrac{tx}{a}-\dfrac{y}{b}+t=0andxa+tyb1=0\dfrac{x}{a}+\dfrac{ty}{b}-1=0.

Explanation

Solution

Hint: Assume a point and its coordinates, and make them satisfy the two equations of lines given in the question. Then, eliminate tt from them, using algebra, and get an equation only in terms of the xx and yy coordinates of the point of intersection you originally assumed.

We have been given two lines in the equation, let’s start working towards simplifying them first.
Given that,
txayb+t=0\dfrac{tx}{a}-\dfrac{y}{b}+t=0 ……………. (1)
btxay=abt\Rightarrow btx-ay=-abt ……………… (A)
xa+tyb1=0\dfrac{x}{a}+\dfrac{ty}{b}-1=0 ……………… (2)
bx+aty=ab\Rightarrow bx+aty=ab ……………… (B)
Thus, we have successfully simplified both the equations to represent something like the general equation of a line, which is y=mx+cy=mx+c.
Let the given curves intersect each other at a pointP(h,k)P(h,k).
Therefore P(h,k)P(h,k)will satisfy both the curves. Let’s put the value of P(h,k)P(h,k) in both, equation (A) and equation (B). Doing so, we get :
bthak=abtbth-ak=-abt ……………. (3)
bh+atk=abbh+atk=ab …………….. (4)
Multiply the equation (3) with tt and add with the equation (4).
Multiplying (3) with tt, we will get the equation bt2hakt=abt2b{{t}^{2}}h-akt=-ab{{t}^{2}}
Now, let’s add the new equation we got after multiplying (3), to (4). Doing so, we get :
(bt2hakt=abt2)\left( b{{t}^{2}}h-akt=-ab{{t}^{2}} \right)
bh+atk=abbh+atk=ab
----------------
bh+bt2h=ababt2\Rightarrow bh+b{{t}^{2}}h=ab-ab{{t}^{2}}
bh(1+t2)=ab(1t2)\Rightarrow bh\left( 1+{{t}^{2}} \right)=ab\left( 1-{{t}^{2}} \right)
h=a(1t2)(1+t2)\Rightarrow h=\dfrac{a(1-{{t}^{2}})}{(1+{{t}^{2}})}
ha=(1t2)(1+t2)\Rightarrow \dfrac{h}{a}=\dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}
Squaring both sides, we get :
(ha)2=((1t2)(1+t2))2\Rightarrow {{\left( \dfrac{h}{a} \right)}^{2}}={{\left( \dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)}^{2}}
h2a2=(1t2)2(1+t2)2\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}} ……….. (5)
Put the valueh=a(1t2)(1+t2)h=\dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} in equation (4), we get
b(a(1t2)(1+t2))+atk=abb\left( \dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)+atk=ab
tk=bb(1t2)(1+t2)\Rightarrow tk=b-\dfrac{b\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}
k=bt(1+t21+t21+t2)\Rightarrow k=\dfrac{b}{t}\left( \dfrac{1+{{t}^{2}}-1+{{t}^{2}}}{1+{{t}^{2}}} \right)
k=2bt1+t2\Rightarrow k=\dfrac{2bt}{1+{{t}^{2}}}
kb=2t1+t2\Rightarrow \dfrac{k}{b}=\dfrac{2t}{1+{{t}^{2}}}
Squaring both sides, we get
(kb)2=(2t1+t2)2\Rightarrow {{\left( \dfrac{k}{b} \right)}^{2}}={{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}
k2b2=4t2(1+t2)2\Rightarrow \dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}} ……………. (6)
On adding equation (5) and equation (6), we get :
h2a2=(1t2)2(1+t2)2\dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}
k2b2=4t2(1+t2)2\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}
----------------------
h2a2+k2b2=(1t2)2(1+t2)2+4t2(1+t2)2\dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}+\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}
h2a2+k2b2=1+t42t2+4t2(1+t2)2=1+t4+2t2(1+t2)2\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}

h2a2+k2b2=1\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=1 This is the locus of point of intersection in (h,k)(h,k).
Now, to finally find our locus in terms of xx and yy, all we have to do is this :
Replace (h,k)(x,y)(h,k)\to (x,y). Doing so, we get :
x2a2+y2b2=1\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1
Therefore, we can say that the locus of points of intersection of a given curve is an ellipse.

Note: The given equations are in parametric from with parameter tt. For different values of tt, we get a different equation of straight line.