Solveeit Logo

Question

Question: Find the locus of the midpoint of the chord of the parabola \[{{y}^{2}}=4ax\], which passes through ...

Find the locus of the midpoint of the chord of the parabola y2=4ax{{y}^{2}}=4ax, which passes through the point (3b,b)\left( 3b,b \right).

Explanation

Solution

Hint: Write the equation of chord and satisfy the given point and use formula for midpoint which is x=x1+x22,y=y1+y22x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}.

Complete step-by-step answer:
We are given a chord of the parabola which passes through the point (3b,b)\left( 3b,b \right).
Here, we have to find the locus of midpoint of a given chord.


Let the midpoint of the given chord be (h,k)\left( h,k \right).
We know that any general point on parabola P(t)P\left( t \right) is (at2,2at)\left( a{{t}^{2}},2at \right).
So, we get point R(t1)=(at12,2at1)R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right) and point Q(t2)=(at22,2at2)Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)
We know that equation of any line passing through (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is
(yy1)=(y2y1)(x2x1)(xx1)\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)
Therefore, we get equation of chord passing through R(t1)=(at12,2at1)R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right) and point Q(t2)=(at22,2at2)Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right) as,
(y2at1)=(2at22at1)(at22at12)(xat12)\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)
By cancelling the like terms, we get,
(y2at1)=2(t2t1)(t22t12)(xat12)\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)
Since we know that,
(a2b2)=(ab)(a+b)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)
Therefore, we get,
(y2at1)=2(t2t1)(t2t1)(t2+t1)(xat12)\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)
By cancelling the like terms, we get,
(y2at1)=2(xat12)(t2+t1)\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}
After cross multiplying the above equation, we get,
(y2at1)(t2+t1)=2(xat12)\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)
Simplifying the equation, we get,
y(t2+t1)2at1t22at12=2x2at12y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}
Finally, we get
y(t2+t1)2at1t2=2x.....(i)y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)
Now, we know that midpoint say (x,y)\left( x,y \right) of any line joining points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right)is:
x=x1+x22x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2} and y=y1+y22y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}
Therefore, we get the midpoint (h,k)\left( h,k \right) of chord joining R(t1)=(at12,2at1)R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right) and point Q(t2)=(at22,2at2)Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right) as:
h=at12+at222....(ii)h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)
k=2at1+2at22....(iii)k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)
Taking 2a common from equation (iii)\left( iii \right), we get,
k=2a(t1+t2)2k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}.
Therefore, we get,
ka=(t1+t2)....(iv)\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)
Taking ‘a’ common from equation(ii)\left( ii \right), we get,
h=a(t12+t22)2h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}
Or, 2ha=t12+t22\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}
Since, we know that a2+b2+2ab=(a+b)2{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}
Now, we subtract 2ab from both sides. We get,
a2+b2=(a+b)22ab{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab
Therefore, we get,
2ha=(t1+t2)22t1t2\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}
Now, we put the value of (t1+t2)\left( {{t}_{1}}+{{t}_{2}} \right) from equation (iv). We get,
2ha=(ka)22t1t2\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}
Or 2t1t2=k2a22ha2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}
By dividing both sides by 2, we get,
t1t2=k22a2ha.....(v){{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)
Now, we will put the values of (t1+t2)\left( {{t}_{1}}+{{t}_{2}} \right) and (t1t2)\left( {{t}_{1}}{{t}_{2}} \right) from equation (iv)\left( iv \right)and (v)\left( v \right) in equation (i)\left( i \right).
We get,
y(t2+t1)2a(t1t2)=2xy\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x
y(ka)2a(k22a2ha)=2x\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x
yka2a(k22ha2a2)=2x\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x
By cancelling the like terms, we get,
yka(k22ha)a=2x\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x
After simplifying and cross-multiplying above equation, we get,
(yk)(k22ha)=2xa\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa
Now, we are given that this chord passes through point (3b,b)\left( 3b,b \right).
Therefore, we will put x=3bx=3b and y=by=b.
We get,
bk(k22ha)=2(3b)abk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a
bkk2+2ha=6ab\Rightarrow bk-{{k}^{2}}+2ha=6ab
By transposing all the terms to one side,
We get,
k2bk2ha+6ab=0{{k}^{2}}-bk-2ha+6ab=0
Now, to get the locus, we will replace h by x and k by y. We get,
y2by2ax+6ab=0{{y}^{2}}-by-2ax+6ab=0
So, the locus of the midpoint of chord passing through (3b,b)\left( 3b,b \right) is y2by2ax+6ab=0{{y}^{2}}-by-2ax+6ab=0.

Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) which is (yy1)=2ay1(xx1)\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right) and put (h,k)\left( h,k \right) in place of (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and point through which chord in passing [here (3b,b)] in place of (x,y)\left( x,y \right) to get locus of midpoint of chord.