Solveeit Logo

Question

Question: Find the locus of the middle points of the chords of parabola\({{y}^{2}}=8x\) if slope of the chords...

Find the locus of the middle points of the chords of parabolay2=8x{{y}^{2}}=8x if slope of the chords be 4?
a) y=2y=2
b) y+x=1y+x=1
c) y=1y=1
d) y=0y=0

Explanation

Solution

Hint: Consider the points on parabola in the form of(at2,2at)(a{{t}^{2}},2at) and find the equation of line using the two points taken on parabola.

Complete step-by-step solution -

Let the given parabola y2=4ax{{y}^{2}}=4ax has a chord, which cuts parabola at (at12,2at1)(a{{t}_{1}}^{2},2a{{t}_{1}})& (at22,2at2)(a{{t}_{2}}^{2},2a{{t}_{2}}) .

Let the given midpoint of chord AB be(h,k)\left( h,k \right) .
We know midpoint of a line joining two point (x,y)&(m,n)\left( x,y \right)\And \left( m,n \right) =(x+m2,y+n2)\left( \dfrac{x+m}{2},\dfrac{y+n}{2} \right) .
h=(at21+at222)h=\left( \dfrac{a{{t}^{2}}_{1}+a{{t}^{2}}_{2}}{2} \right) & k=(2at1+2at22)k=\left( \dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2} \right)
h=a2(t21+t22)h=\dfrac{a}{2}\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right) …(1)
& k=a(t1+t2)k=a\left( {{t}_{1}}+{{t}_{2}} \right) …(2)
Now,
2h=a(t21+t22)2h=a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2} \right)
Now manipulating it as (a+b)2=a2+b2+2ab{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab ,
2h=a((t1+t2)22t1t2)2h=a{{\left( ({{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}})
From equation (2).
2h=a((ka)22t1t2) 2h=a(ka222t1t2) \begin{aligned} & 2h=a\left( {{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\\ & 2h=a\left( {{\dfrac{k}{{{a}^{2}}}}^{2}}-2{{t}_{1}}{{t}_{2}} \right) \\\ \end{aligned}
t1t2=k22a2ha{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} …(3)
Now find the equation of chord passing through two point at (at12,2at1)(a{{t}_{1}}^{2},2a{{t}_{1}})& (at22,2at2)(a{{t}_{2}}^{2},2a{{t}_{2}}) .
Using two point formula of equation of line yy1=y2y1x1x1(xx1)y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{1}}-{{x}_{1}}}\left( x-{{x}_{1}} \right) .
Then,
y2at1=(2at22at1)at22at21(xat21)y-2a{{t}_{1}}=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{a{{t}^{2}}_{2}-a{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right)
Taking a common from numerator and denominator & then expand denominator (a2b2)=(ab)(a+b)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) .
y2at1=2(t2t1)t22t21(xat21) y2at1=2(t2t1)(t2+t1)(t2t1)(xat21) y2at1=2(t2+t1)(xat21) (y2at1)(t2+t1)=2(xat21) y(t2+t1)2at1t22at21=2x2at21 \begin{aligned} & y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{{{t}^{2}}_{2}-{{t}^{2}}_{1}}\left( x-a{{t}^{2}}_{1} \right) \\\ & y-2a{{t}_{1}}=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{({{t}_{2}}+{{t}_{1}})\left( {{t}_{2}}-{{t}_{1}} \right)}\left( x-a{{t}^{2}}_{1} \right) \\\ & y-2a{{t}_{1}}=\dfrac{2}{({{t}_{2}}+{{t}_{1}})}\left( x-a{{t}^{2}}_{1} \right) \\\ & (y-2a{{t}_{1}})({{t}_{2}}+{{t}_{1}})=2\left( x-a{{t}^{2}}_{1} \right) \\\ & y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}-2a{{t}^{2}}_{1}=2x-2a{{t}^{2}}_{1} \\\ \end{aligned}
2at21-2a{{t}^{2}}_{1} will be cancel out from both side
Then, we get
y(t2+t1)2at1t2=2x  \begin{aligned} & y({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x \\\ & \\\ \end{aligned}
Equation of chord will be:
y=2x(t2+t1)+2at1t2(t2+t1)y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{2a{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})} …(4)
Now,
Parabola equation given: y2=8x{{y}^{2}}=8x
Comparing with the standard equation, we get a=2a=2 .
Then equation of chord after putting value of a:
y=2x(t2+t1)+4t1t2(t2+t1)y=\dfrac{2x}{({{t}_{2}}+{{t}_{1}})}+\dfrac{4{{t}_{1}}{{t}_{2}}}{({{t}_{2}}+{{t}_{1}})}
Slope of chord =4=4 (given in the question)
2(t2+t1)=4\dfrac{2}{({{t}_{2}}+{{t}_{1}})}=4 (from equation (4) comparing with the general equation of line y=mx+cy=mx+c )
From equation (2)
2k2=2 2k=2 k=1 \begin{aligned} & \dfrac{2}{\dfrac{k}{2}}=2 \\\ & \dfrac{2}{k}=2 \\\ & k=1 \\\ \end{aligned}
Replace k with yy, we get
y=1y=1
Hence, option c) is true.

Note: We can use direct formula to find the equation of tangent taking two arbitrary point on a parabola by using direct formula y(t2+t1)2at1t2=2xy({{t}_{2}}+{{t}_{1}})-2a{{t}_{1}}{{t}_{2}}=2x. In this question writing the equation of tangent in the form of y=mx+cy=mx+c as slope m'm' is given in the question.