Solveeit Logo

Question

Question: Find the locus of the middle points of chords of the parabola which pass through the fixed point \[\...

Find the locus of the middle points of chords of the parabola which pass through the fixed point (h, k)\left( h,\text{ }k \right).

Explanation

Solution

Hint: Write the slope point form of a line passing through points, say B(at2,2at)B\left( a{{t}^{2}},2at \right) and C(au2,2au)C\left( a{{u}^{2}},2au \right)that lies on the chord of the parabola. Then, we can substitute (h,k)\left( h,k \right) in it to get the equation. Then we can use the midpoint formula to get the coordinates of the midpoint of the chord. We can find its locus by substituting the variables in the equation of the chord we had found out.

Complete step-by-step answer:

Let us consider the above picture. B(at2,2at)B\left( a{{t}^{2}},2at \right) and C(au2,2au)C\left( a{{u}^{2}},2au \right) are two variable points on a standard parabola y2=4ax{{y}^{2}}=4ax with parameters tt and uu respectively. A(h,k)A\left( h,k \right) is a fixed point through which our variable line passes.
We have to find the locus of mid-points of the chord BCBC. We can write the equation of BCBC using two- point form of a line which is,
yy1xx1=y2y1x2x1\dfrac{y-y1}{x-x1}=\dfrac{y2-y1}{x2-x1}
So we get the equation of line BCBC as,
BC:y2atxat2=2au2atau2at2BC:\dfrac{y-2at}{x-a{{t}^{2}}}=\dfrac{2au-2at}{a{{u}^{2}}-a{{t}^{2}}}
Also, the point A(h,k)A\left( h,k \right) lies on the line BCBC so it must also satisfy its equation. So substituting it, we get
k2athat2=2au2atau2at2\dfrac{k-2at}{h-a{{t}^{2}}}=\dfrac{2au-2at}{a{{u}^{2}}-a{{t}^{2}}}
Cross-multiplying and further simplifying we get,
(k2at)(u+t)=2(hat2) ku+kt2aut2at2=2h2at2 ku+kt2aut=2h k(u+t)2aut2h=0...(i) \begin{aligned} & \left( k-2at \right)\left( u+t \right)=2\left( h-a{{t}^{2}} \right) \\\ & ku+kt-2aut-2a{{t}^{2}}=2h-2a{{t}^{2}} \\\ & ku+kt-2aut=2h \\\ & k\left( u+t \right)-2aut-2h=0...(i) \\\ \end{aligned}
To find the locus of the point, we consider a point with coordinates (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right), which is a general point on the locus. Since (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) lies on the locus which is the locus of mid-points of the chord of the parabola, we can use midpoint formula and we can write that Xmid=x1+x22{{X}_{mid}}=\dfrac{{{x}_{1}}+{{x}_{2}}}{2} and Ymid=y1+y22{{Y}_{mid}}=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}. Therefore, we will get the coordinates as below,
{{x}_{1}}=\left\\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\\}
{{x}_{1}}=\left\\{ \dfrac{\left( a{{t}^{2}} \right)+\left( a{{u}^{2}} \right)}{2} \right\\}
2x1=(at2)+(au2)2{{x}_{1}}=\left( a{{t}^{2}} \right)+\left( a{{u}^{2}} \right)
\dfrac{2{{x}_{1}}}{a}=\left\\{ {{t}^{2}}+{{u}^{2}} \right\\}...(ii)
{{y}_{1}}=\left\\{ \dfrac{\left( y~coordinate~of~A \right)+\left( y~coordinate~of~B \right)}{2} \right\\}
{{y}_{1}}=\left\\{ \dfrac{\left( 2at \right)+\left( 2au \right)}{2} \right\\}
y1=(at)+(au){{y}_{1}}=\left( at \right)+\left( au \right)
\dfrac{{{y}_{1}}}{a}=\left\\{ t+u \right\\}...(iii)
So our next task in finding the locus is eliminating the variables from the above equations. Squaring equation (iii)\left( iii \right) and subtracting it from (ii)\left( ii \right) i.e. (iii)2(ii){{\left( iii \right)}^{2}}-\left( ii \right) gives,
{{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-\dfrac{2{{x}_{1}}}{a}={{\left( t+u \right)}^{2}}-\left\\{ {{u}^{2}}+{{t}^{2}} \right\\}
{{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-\dfrac{2{{x}_{1}}}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-\left\\{ {{u}^{2}}+{{t}^{2}} \right\\}
(y1a)22x1a=2ut...(iv){{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-\dfrac{2{{x}_{1}}}{a}=2ut...(iv)
Substituting equation (iii)\left( iii \right) and (iv)\left( iv \right) in (i)\left( i \right),
k(y1a)a[(y1a)22x1a]2h=0k\left( \dfrac{{{y}_{1}}}{a} \right)-a\left[ {{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-\dfrac{2{{x}_{1}}}{a} \right]-2h=0
Multiplying the terms with a, we get
ky1a2[(y1a)22x1a]2ah=0k{{y}_{1}}-{{a}^{2}}\left[ {{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-\dfrac{2{{x}_{1}}}{a} \right]-2ah=0
Simplifying the equation further, we get
ky1a2[y12a22x1a]2ah=0 ky1a2[y122ax1a2]2ah=0 ky1y12+2ax12ah=0 \begin{aligned} & \Rightarrow k{{y}_{1}}-{{a}^{2}}\left[ \dfrac{{{y}_{1}}^{2}}{{{a}^{2}}}-\dfrac{2{{x}_{1}}}{a} \right]-2ah=0 \\\ & \Rightarrow k{{y}_{1}}-{{a}^{2}}\left[ \dfrac{{{y}_{1}}^{2}-2a{{x}_{1}}}{{{a}^{2}}} \right]-2ah=0 \\\ & \Rightarrow k{{y}_{1}}-{{y}_{1}}^{2}+2a{{x}_{1}}-2ah=0 \\\ \end{aligned}
Now since (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) are general points on our locus, we can replace x1{{x}_{1}} by xx and y1{{y}_{1}} by yy.
kyy2+2ax2ah=0 y2+ky+2a(xh)=0 y2ky2a(xh)=0 y2=ky2a(xh) \begin{aligned} & \Rightarrow ky-{{y}^{2}}+2ax-2ah=0 \\\ & \Rightarrow -{{y}^{2}}+ky+2a\left( x-h \right)=0 \\\ & \Rightarrow {{y}^{2}}-ky-2a\left( x-h \right)=0 \\\ & \Rightarrow {{y}^{2}}=ky-2a\left( x-h \right) \\\ \end{aligned}
Hence, y2=ky2a(xh){{y}^{2}}=ky-2a\left( x-h \right) is the required locus.

Note: In this question, if the student knows the equation of the chord of the parabola, then they can directly use it instead of deriving it. This will help the student save time in the exams. The student must make sure to simplify the locus and represent it in the simplest form possible.