Solveeit Logo

Question

Question: Find the locus of a point which is such that two of the normal drawn from it to the parabola are at ...

Find the locus of a point which is such that two of the normal drawn from it to the parabola are at right angles.

Explanation

Solution

Find the slope of tangent by dydx(x1,y1){{\left. \dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}, where y is a given function and (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) is a point of tangency and hence, get slope of normal by relation
Product of slopes of two perpendicular lines = - 1
Suppose P and Q as parametric coordinates on parabola y2=4ax{{y}^{2}}=4ax. Parametric coordinate on this parabola is given as (at2,2at)\left( a{{t}^{2}},2at \right).

Complete step-by-step answer:
Let us suppose the equation of the parabola be y2=4ax{{y}^{2}}=4ax.
y2=4ax{{y}^{2}}=4ax…………….. (i)
Now, we know parametric coordinates on parabola y2=4ax{{y}^{2}}=4axcan be given as (at2,2at)\left( a{{t}^{2}},2at \right). So, let two normal drawn to the parabola from a point are (at2,2at),(at22,2at2)\left( a{{t}^{2}},2at \right),\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right) and coordinates of point is (h, k) and hence, we need to determine the locus of point (h, k). So, we can draw diagram as

Hence, R is a point from where normal to the parabola at points P and Q are drawn and QRP90\angle QRP\to {{90}^{\circ }} i.e. normal are perpendicular to each other. So, we have P(h,k),P(at12,2at1),Q(at22,2at2)P\left( h,k \right),P\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right),Q\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right) …………….. (ii)
As, we know slope of any tangent at any point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) for any curve y = f(x) is given by dydx(x1,y1){{\left. \dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}.
So, slope of tangent through P can be given by differentiating the given curve y2=4ax{{y}^{2}}=4ax and hence putting the coordinate of P to it.
So, we can differentiate y2=4ax{{y}^{2}}=4axas ddxy2=ddx=4ax\dfrac{d}{dx}{{y}^{2}}=\dfrac{d}{dx}=4ax
We know ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}
So, we get
2ydydx=4a dydx=2ay \begin{aligned} & 2y\dfrac{dy}{dx}=4a \\\ & \dfrac{dy}{dx}=\dfrac{2a}{y} \\\ \end{aligned}
So, slope at P is
dydx(at2,2at1)=2a2at1=1t1{{\left. \dfrac{dy}{dx} \right|}_{\left( a{{t}^{2}},2a{{t}_{1}} \right)}}=\dfrac{2a}{2a{{t}_{1}}}=\dfrac{1}{{{t}_{1}}}
And similarly slope at Q is
dydx(at22,2at2)=2a2at2=1t2{{\left. \dfrac{dy}{dx} \right|}_{\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)}}=\dfrac{2a}{2a{{t}_{2}}}=\dfrac{1}{{{t}_{2}}}
And as we know tangent at any point of the curve is perpendicular to the normal at the same point. And hence, as we know, the product of slopes of two perpendicular lines I ‘-1’. So, we can get reaction as
m1m2=1{{m}_{1}}{{m}_{2}}=-1 …………….. (iii)
Where m1,m2{{m}_{1}},{{m}_{2}}are slopes of both lines point P so, slopes of normal at point P can be given as
(slope of normal at P) !!×!! (slope of tangent at P) = - 1 (slope of normal at P) !!×!! 1t1=-1 slope of normal at P = - t1 \begin{aligned} & \left( \text{slope of normal at P} \right)\text{ }\\!\\!\times\\!\\!\text{ }\left( \text{slope of tangent at P} \right)\text{ = - 1} \\\ & \left( \text{slope of normal at P} \right)\text{ }\\!\\!\times\\!\\!\text{ }\dfrac{\text{1}}{{{\text{t}}_{\text{1}}}}\text{=-1} \\\ & \text{slope of normal at P = - }{{\text{t}}_{1}} \\\ \end{aligned}
Similarly,
slope of normal at Q = - t2\text{slope of normal at Q = - }{{\text{t}}_{2}}
Now, we know equation of a line passing through point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right)and have slope ‘m’ can be given as
yy1=m(xx1)y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) ……………. (iv)
So, normal at P can be given as
y2at1=t1(xat12) y2at1=t1x+at13 \begin{aligned} & y-2a{{t}_{1}}=-{{t}_{1}}\left( x-a{{t}_{1}}^{2} \right) \\\ & y-2a{{t}_{1}}=-{{t}_{1}}x+a{{t}_{1}}^{3} \\\ \end{aligned}
t1x+y2at1at13=0{{t}_{1}}x+y-2a{{t}_{1}}-a{{t}_{1}}^{3}=0…………. (v)
Similarly, normal at Q can be given as
y2at2=t2(xat22) y2at2=t2x+at23 \begin{aligned} & y-2a{{t}_{2}}=-{{t}_{2}}\left( x-a{{t}_{2}}^{2} \right) \\\ & y-2a{{t}_{2}}=-{{t}_{2}}x+a{{t}_{2}}^{3} \\\ \end{aligned}
t2x+y2at2at23=0{{t}_{2}}x+y-2a{{t}_{2}}-a{{t}_{2}}^{3}=0 …………… (vi)
Now, subtract equation (v) and (vi) to get value of ‘x’ coordinate of point R, so, we get

& \left( {{t}_{2}}x+y-2a{{t}_{2}}-a{{t}_{2}}^{3} \right)-\left( {{t}_{1}}x+y-2a{{t}_{1}}-a{{t}_{1}}^{3} \right)=0 \\\ & x\left( {{t}_{2}}-{{t}_{1}} \right)-2a\left( {{t}_{2}}-{{t}_{1}} \right)-a\left( {{t}_{2}}^{3}-{{t}_{2}}^{3} \right)=0 \\\ \end{aligned}$$ We know ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$ $$\begin{aligned} & \left( {{t}_{2}}-{{t}_{1}} \right)x-2a\left( {{t}_{2}}-{{t}_{1}} \right)-a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}^{2}}_{2}+{{t}^{2}}_{1}+{{t}_{1}}{{t}_{2}} \right)=0 \\\ & \left( {{t}_{2}}-{{t}_{1}} \right)\left[ x-2a-a\left( {{t}^{2}}_{2}+{{t}^{2}}_{1}+{{t}_{1}}{{t}_{2}} \right) \right]=0 \\\ \end{aligned}$$ We get $$\begin{aligned} & {{t}_{2}}-{{t}_{1}}=0,x-2a-a\left( {{t}^{2}}_{2}+{{t}^{2}}_{1}+{{t}_{1}}{{t}_{2}} \right)=0 \\\ & {{t}_{1}}={{t}_{2}},x-2a-a\left( {{t}^{2}}_{2}+{{t}^{2}}_{1}+{{t}_{1}}{{t}_{2}} \right)=0 \\\ \end{aligned}$$ As points P and Q cannot be the same, so ${{t}_{1}}\ne {{t}_{2}}$ . Hence, we can ignore ${{t}_{1}}={{t}_{2}}$equation. So, we get $\begin{aligned} & x-2a-a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2}+{{t}_{2}}{{t}_{1}} \right)=0 \\\ & x=2a+a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2}+{{t}_{1}}{{t}_{2}} \right) \\\ & x=2a+a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2}+{{t}_{1}}{{t}_{2}} \right) \\\ & x=2+a\left( {{t}^{2}}_{1}+{{t}^{2}}_{2}+{{t}_{1}}{{t}_{2}} \right) \\\ \end{aligned}$ Add and subtract ${{t}_{1}}{{t}_{2}}$to the bracket of right hand side of the above question. We get $\begin{aligned} & x=2+\left( {{t}^{2}}_{1}+{{t}^{2}}_{2}+{{t}_{1}}{{t}_{2}}-{{t}_{1}}{{t}_{2}} \right)a \\\ & x=2+\left( {{t}^{2}}_{1}+{{t}^{2}}_{2}+2{{t}_{1}}{{t}_{2}}-{{t}_{1}}{{t}_{2}} \right)a \\\ \end{aligned}$ $x=2+a\left( {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-{{t}_{1}}{{t}_{2}} \right)$…………… (vii) Now, divide the equations (v) by ${{t}_{1}}$and equation (vi) by ${{t}_{2}}$, we get $x+\dfrac{y}{{{t}_{1}}}-2a-a{{t}_{1}}^{2}=0$ …………… (viii) $x+\dfrac{y}{{{t}_{2}}}-2a-a{{t}_{2}}^{2}=0$……………. (ix) Now, subtract it to get value of ‘y’, so, we get $\begin{aligned} & \left( x+\dfrac{y}{{{t}_{1}}}-2a-a{{t}_{1}}^{2} \right)-\left( x+\dfrac{y}{{{t}_{2}}}-2a-a{{t}_{2}}^{2} \right)=0 \\\ & \dfrac{y}{{{t}_{1}}}-\dfrac{y}{{{t}_{2}}}-a{{t}_{1}}^{2}+a{{t}_{2}}^{2}=0 \\\ & y\left[ \dfrac{{{t}_{2}}-{{t}_{1}}}{{{t}_{1}}-{{t}_{2}}} \right]-a\left( {{t}_{1}}^{2}-{{t}_{2}}^{2} \right)=0 \\\ \end{aligned}$ Now, we know ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, so, we get $\begin{aligned} & y\left[ \dfrac{{{t}_{2}}-{{t}_{1}}}{{{t}_{1}}-{{t}_{2}}} \right]-a\left( {{t}_{1}}-{{t}_{2}} \right)\left( {{t}_{1}}+{{t}_{2}} \right)=0 \\\ & \left( {{t}_{2}}-{{t}_{1}} \right)\left[ \dfrac{y}{{{t}_{1}}{{t}_{2}}}+\left( {{t}_{1}}+{{t}_{2}} \right) \right]=0 \\\ & {{t}_{1}}-{{t}_{2}}=0,\dfrac{y}{{{t}_{1}}{{t}_{2}}}+{{t}_{1}}+{{t}_{2}}=0 \\\ \end{aligned}$ As${{t}_{2}}\ne {{t}_{1}}$ so, we get $\dfrac{y}{{{t}_{1}}{{t}_{2}}}+{{t}_{1}}+{{t}_{2}}=0$ $\dfrac{y}{{{t}_{1}}{{t}_{2}}}=-\left( {{t}_{1}}+{{t}_{2}} \right)$ $y=-{{t}_{1}}{{t}_{2}}\left( {{t}_{1}}+{{t}_{2}} \right)$……………. (x) Now, we know normal are perpendicular to each other, so, we can get an equation with the help of equation (iii) and using the normal i.e. $'-{{t}_{1}}','-{{t}_{2}}'$. So we get $$\left( -{{t}_{1}} \right)\left( -{{t}_{2}} \right)=-1$$ $${{t}_{1}}{{t}_{2}}=-1$$………….. (xi) Now, put $${{t}_{1}}{{t}_{2}}=-1$$to equation (vii) and (x), we get $\begin{aligned} & x=2+a\left( {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+1 \right) \\\ & x=-\left( -1 \right)\left( {{t}_{1}}+{{t}_{2}} \right)=\left( {{t}_{1}}+{{t}_{2}} \right) \\\ \end{aligned}$ As, the point R is represented by coordinates by, (h, k) so, we get equations as $h=2+a\left( {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+1 \right)$ …………… (xii) $k=\left( {{t}_{1}}+{{t}_{2}} \right)$………….. (xiii) Now, put the value of ${{t}_{1}}+{{t}_{2}}$ as ‘k’ from (xiii) to (xii). We get $$\begin{aligned} & h=2+a\left( {{k}^{2}}+1 \right) \\\ & h-2=a\left( {{k}^{2}}+1 \right) \\\ & h-2=a{{k}^{2}}+a \\\ & h-a{{k}^{2}}-2-a=0 \\\ \end{aligned}$$ Replace (h, k) by (x, y) to get locus of the point R, we get $\begin{aligned} & x-a{{y}^{2}}-2-a=0 \\\ & x=a{{y}^{2}}+2+a \\\ \end{aligned}$ **Note:** Another approach for getting normal equation would be that we can get equation of tangent by T = 0, where we need to replace $\begin{aligned} & {{x}^{2}}\to x{{x}_{1}} \\\ & {{y}^{2}}\to y{{y}_{1}} \\\ & x\to \left( \dfrac{x+{{x}_{1}}}{2} \right) \\\ & y\to \left( \dfrac{y+{{y}_{1}}}{2} \right) \\\ \end{aligned}$ So, we can write the equation of tangent through P and Q and hence, we can get slopes of them as well. So, get slopes of normal at P and Q as well, and by using $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$, we can get equations of normal are well. One may suppose P and Q as $\left( {{x}_{1}}{{y}_{1}} \right),\left( {{x}_{2}}{{y}_{2}} \right)$ and solve the problem. But it will make the solution very complex and will take more time. So, always try to solve these questions by parametric coordinates.