Solveeit Logo

Question

Question: Find the locus of \[4{x^2} + 4{y^2} - 4x + 8y + 7 = 0\]....

Find the locus of 4x2+4y24x+8y+7=04{x^2} + 4{y^2} - 4x + 8y + 7 = 0.

Explanation

Solution

First of all, make the coefficients of x2{x^2} and y2{y^2} equal to one and then complete their whole squares by using simple math applications and algebraic identities. Then find the required locus.

Complete step-by-step answer:
Given equation is 4x2+4y24x+8y+7=04{x^2} + 4{y^2} - 4x + 8y + 7 = 0
Dividing both sides with 4 we get

4x2+4y24x+8y+74=04 4x24+4y244x4+8y4+74=0 x2+y2x+2y+74=0 \Rightarrow \dfrac{{4{x^2} + 4{y^2} - 4x + 8y + 7}}{4} = \dfrac{0}{4} \\\ \Rightarrow \dfrac{{4{x^2}}}{4} + \dfrac{{4{y^2}}}{4} - \dfrac{{4x}}{4} + \dfrac{{8y}}{4} + \dfrac{7}{4} = 0 \\\ \Rightarrow {x^2} + {y^2} - x + 2y + \dfrac{7}{4} = 0 \\\

Grouping the same variables, we have
(x2x)+(y2+2y)+74=0\Rightarrow \left( {{x^2} - x} \right) + \left( {{y^2} + 2y} \right) + \dfrac{7}{4} = 0
To complete the whole square, add and subtract (12)2=14{\left( { - \dfrac{1}{2}} \right)^2} = \dfrac{1}{4} in the first bracket and (22)2=1{\left( {\dfrac{2}{2}} \right)^2} = 1 in the second bracket

(x2x+1414)+(y2+2y+11)+74=0 (x22(12)(x)+14)14+(y2+2(1)(y)+1)1+74=0 (x22(12)(x)+(12)2)+(y2+2(1)(y)+12)=1+1474 \Rightarrow \left( {{x^2} - x + \dfrac{1}{4} - \dfrac{1}{4}} \right) + \left( {{y^2} + 2y + 1 - 1} \right) + \dfrac{7}{4} = 0 \\\ \Rightarrow \left( {{x^2} - 2\left( {\dfrac{1}{2}} \right)\left( x \right) + \dfrac{1}{4}} \right) - \dfrac{1}{4} + \left( {{y^2} + 2\left( 1 \right)\left( y \right) + 1} \right) - 1 + \dfrac{7}{4} = 0 \\\ \Rightarrow \left( {{x^2} - 2\left( {\dfrac{1}{2}} \right)\left( x \right) + {{\left( {\dfrac{1}{2}} \right)}^2}} \right) + \left( {{y^2} + 2\left( 1 \right)\left( y \right) + {1^2}} \right) = 1 + \dfrac{1}{4} - \dfrac{7}{4} \\\

We know that (a22ab+b2)=(ab)2\left( {{a^2} - 2ab + {b^2}} \right) = {\left( {a - b} \right)^2} and (a2+2ab+b2)=(a+b)2\left( {{a^2} + 2ab + {b^2}} \right) = {\left( {a + b} \right)^2}

(x12)2+(y+1)2=4+174 (x12)2+(y+1)2=24 S(x12)2+(y+1)2=12 \Rightarrow {\left( {x - \dfrac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} = \dfrac{{4 + 1 - 7}}{4} \\\ \Rightarrow {\left( {x - \dfrac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} = \dfrac{{ - 2}}{4} \\\ \therefore S \equiv {\left( {x - \dfrac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} = \dfrac{{ - 1}}{2} \\\

We know that for circle equation (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} the centre is (h,k)\left( {h,k} \right) and radius is r cmr{\text{ cm}}.
So, for the given circle the centre of the circle is (12,1)\left( {\dfrac{1}{2}, - 1} \right) and radius of the circle is 12=i22=i2\sqrt {\dfrac{{ - 1}}{2}} = \sqrt {\dfrac{{{i^2}}}{2}} = \dfrac{i}{{\sqrt 2 }} which is imaginary number.
As the radius of the circle is imaginary, the given circle is an imaginary circle at the point (12,1)\left( {\dfrac{1}{2}, - 1} \right) which actually does not exist.**
Thus, the locus of the circle at (12,1)\left( {\dfrac{1}{2}, - 1} \right) which forms an imaginary circle is (x12)2+(y+1)2=12{\left( {x - \dfrac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} = \dfrac{{ - 1}}{2}.**

Note: A locus is a set of points that meet a given condition. The definition of circle locus of points a given distance from a given point in a two-dimensional plane. The given distance is the radius and the given point is the centre of the circle.