Solveeit Logo

Question

Question: Find the local minima if f(x)=e^x(1-x)^2...

Find the local minima if f(x)=e^x(1-x)^2

Answer

0

Explanation

Solution

To find the local minima of the function f(x)=ex(1x)2f(x)=e^x(1-x)^2, we follow these steps:

  1. Find the first derivative, f(x)f'(x): Using the product rule (uv)=uv+uv(uv)' = u'v + uv', where u=exu = e^x and v=(1x)2v = (1-x)^2: u=exu' = e^x v=2(1x)(1)=2(1x)v' = 2(1-x)(-1) = -2(1-x) So, f(x)=ex(1x)2+ex(2(1x))f'(x) = e^x(1-x)^2 + e^x(-2(1-x)) Factor out ex(1x)e^x(1-x): f(x)=ex(1x)[(1x)2]f'(x) = e^x(1-x)[(1-x) - 2] f(x)=ex(1x)(1x)f'(x) = e^x(1-x)(-1-x) f(x)=ex(1x)(1+x)f'(x) = -e^x(1-x)(1+x) f(x)=ex(1x2)f'(x) = -e^x(1-x^2)

  2. Find the critical points by setting f(x)=0f'(x) = 0: ex(1x2)=0-e^x(1-x^2) = 0 Since ex>0e^x > 0 for all real xx, we must have: 1x2=01-x^2 = 0 x2=1x^2 = 1 x=±1x = \pm 1 The critical points are x=1x = 1 and x=1x = -1.

  3. Find the second derivative, f(x)f''(x): Using the product rule on f(x)=ex(1x2)f'(x) = -e^x(1-x^2), where u=exu = -e^x and v=(1x2)v = (1-x^2): u=exu' = -e^x v=2xv' = -2x So, f(x)=(ex)(1x2)+(ex)(2x)f''(x) = (-e^x)(1-x^2) + (-e^x)(-2x) f(x)=ex(1x2)+2xexf''(x) = -e^x(1-x^2) + 2xe^x Factor out exe^x: f(x)=ex(1+x2+2x)f''(x) = e^x(-1+x^2+2x) f(x)=ex(x2+2x1)f''(x) = e^x(x^2+2x-1)

  4. Apply the second derivative test:

    • At x=1x = 1: Substitute x=1x=1 into f(x)f''(x): f(1)=e1(12+2(1)1)f''(1) = e^1(1^2+2(1)-1) f(1)=e(1+21)f''(1) = e(1+2-1) f(1)=2ef''(1) = 2e Since f(1)=2e>0f''(1) = 2e > 0, x=1x=1 is a point of local minimum.

    • At x=1x = -1: Substitute x=1x=-1 into f(x)f''(x): f(1)=e1((1)2+2(1)1)f''(-1) = e^{-1}((-1)^2+2(-1)-1) f(1)=e1(121)f''(-1) = e^{-1}(1-2-1) f(1)=2e1f''(-1) = -2e^{-1} Since f(1)=2e1<0f''(-1) = -2e^{-1} < 0, x=1x=-1 is a point of local maximum.

  5. Calculate the local minimum value: The local minimum occurs at x=1x=1. Substitute this value back into the original function f(x)=ex(1x)2f(x)=e^x(1-x)^2: f(1)=e1(11)2f(1) = e^1(1-1)^2 f(1)=e(0)2f(1) = e(0)^2 f(1)=0f(1) = 0

The local minimum value of the function is 00, which occurs at x=1x=1.