Question
Question: Find the local minima if f(x)=e^x(1-x)^2...
Find the local minima if f(x)=e^x(1-x)^2
0
Solution
To find the local minima of the function f(x)=ex(1−x)2, we follow these steps:
-
Find the first derivative, f′(x): Using the product rule (uv)′=u′v+uv′, where u=ex and v=(1−x)2: u′=ex v′=2(1−x)(−1)=−2(1−x) So, f′(x)=ex(1−x)2+ex(−2(1−x)) Factor out ex(1−x): f′(x)=ex(1−x)[(1−x)−2] f′(x)=ex(1−x)(−1−x) f′(x)=−ex(1−x)(1+x) f′(x)=−ex(1−x2)
-
Find the critical points by setting f′(x)=0: −ex(1−x2)=0 Since ex>0 for all real x, we must have: 1−x2=0 x2=1 x=±1 The critical points are x=1 and x=−1.
-
Find the second derivative, f′′(x): Using the product rule on f′(x)=−ex(1−x2), where u=−ex and v=(1−x2): u′=−ex v′=−2x So, f′′(x)=(−ex)(1−x2)+(−ex)(−2x) f′′(x)=−ex(1−x2)+2xex Factor out ex: f′′(x)=ex(−1+x2+2x) f′′(x)=ex(x2+2x−1)
-
Apply the second derivative test:
-
At x=1: Substitute x=1 into f′′(x): f′′(1)=e1(12+2(1)−1) f′′(1)=e(1+2−1) f′′(1)=2e Since f′′(1)=2e>0, x=1 is a point of local minimum.
-
At x=−1: Substitute x=−1 into f′′(x): f′′(−1)=e−1((−1)2+2(−1)−1) f′′(−1)=e−1(1−2−1) f′′(−1)=−2e−1 Since f′′(−1)=−2e−1<0, x=−1 is a point of local maximum.
-
-
Calculate the local minimum value: The local minimum occurs at x=1. Substitute this value back into the original function f(x)=ex(1−x)2: f(1)=e1(1−1)2 f(1)=e(0)2 f(1)=0
The local minimum value of the function is 0, which occurs at x=1.