Solveeit Logo

Question

Question: Find the local maxima and minima for the function f(x)=e^x(1-x^2)...

Find the local maxima and minima for the function f(x)=e^x(1-x^2)

Answer

Local maximum at x = √2-1 with value 2(√2-1)e^(√2-1), local minimum at x = -1-√2 with value -2(1+√2)e^(-1-√2)

Explanation

Solution

To find the local maxima and minima for the function f(x)=ex(1x2)f(x) = e^x(1-x^2), we follow these steps:

  1. Find the first derivative, f(x)f'(x): Using the product rule, (uv)=uv+uv(uv)' = u'v + uv', where u=exu = e^x and v=1x2v = 1-x^2: u=exu' = e^x v=2xv' = -2x f(x)=ex(1x2)+ex(2x)f'(x) = e^x(1-x^2) + e^x(-2x) f(x)=ex(1x22x)f'(x) = e^x(1-x^2-2x) f(x)=ex(x22x+1)f'(x) = e^x(-x^2-2x+1)

  2. Find the critical points by setting f(x)=0f'(x) = 0: ex(x22x+1)=0e^x(-x^2-2x+1) = 0 Since ex>0e^x > 0 for all real xx, we must have: x22x+1=0-x^2-2x+1 = 0 x2+2x1=0x^2+2x-1 = 0 Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2-4ac}}{2a}: x=2±224(1)(1)2(1)x = \frac{-2 \pm \sqrt{2^2-4(1)(-1)}}{2(1)} x=2±4+42x = \frac{-2 \pm \sqrt{4+4}}{2} x=2±82x = \frac{-2 \pm \sqrt{8}}{2} x=2±222x = \frac{-2 \pm 2\sqrt{2}}{2} x=1±2x = -1 \pm \sqrt{2} The critical points are x1=1+2x_1 = -1+\sqrt{2} and x2=12x_2 = -1-\sqrt{2}.

  3. Find the second derivative, f(x)f''(x): Using the product rule on f(x)=ex(x22x+1)f'(x) = e^x(-x^2-2x+1), where u=exu = e^x and v=x22x+1v = -x^2-2x+1: u=exu' = e^x v=2x2v' = -2x-2 f(x)=ex(x22x+1)+ex(2x2)f''(x) = e^x(-x^2-2x+1) + e^x(-2x-2) f(x)=ex(x22x+12x2)f''(x) = e^x(-x^2-2x+1-2x-2) f(x)=ex(x24x1)f''(x) = e^x(-x^2-4x-1) Alternatively, since x22x+1=0-x^2-2x+1 = 0 at critical points, we can write f(x)=ex(2x2)f''(x) = e^x(-2x-2) for evaluation at critical points.

  4. Apply the second derivative test:

    • At x1=1+2x_1 = -1+\sqrt{2}: f(1+2)=e(1+2)(2(1+2)2)f''(-1+\sqrt{2}) = e^{(-1+\sqrt{2})}(-2(-1+\sqrt{2})-2) f(1+2)=e(1+2)(2222)f''(-1+\sqrt{2}) = e^{(-1+\sqrt{2})}(2-2\sqrt{2}-2) f(1+2)=e(1+2)(22)f''(-1+\sqrt{2}) = e^{(-1+\sqrt{2})}(-2\sqrt{2}) Since e(1+2)>0e^{(-1+\sqrt{2})} > 0 and 22<0-2\sqrt{2} < 0, f(1+2)<0f''(-1+\sqrt{2}) < 0. Therefore, x1=1+2x_1 = -1+\sqrt{2} is a point of local maximum.

    • At x2=12x_2 = -1-\sqrt{2}: f(12)=e(12)(2(12)2)f''(-1-\sqrt{2}) = e^{(-1-\sqrt{2})}(-2(-1-\sqrt{2})-2) f(12)=e(12)(2+222)f''(-1-\sqrt{2}) = e^{(-1-\sqrt{2})}(2+2\sqrt{2}-2) f(12)=e(12)(22)f''(-1-\sqrt{2}) = e^{(-1-\sqrt{2})}(2\sqrt{2}) Since e(12)>0e^{(-1-\sqrt{2})} > 0 and 22>02\sqrt{2} > 0, f(12)>0f''(-1-\sqrt{2}) > 0. Therefore, x2=12x_2 = -1-\sqrt{2} is a point of local minimum.

  5. Calculate the local maximum and minimum values: For the critical points, we know that x2+2x1=0x^2+2x-1=0, which implies 1x2=2x1-x^2 = 2x. So, f(x)=ex(1x2)=ex(2x)f(x) = e^x(1-x^2) = e^x(2x) at the critical points.

    • Local Maximum Value (at x=1+2x = -1+\sqrt{2}): f(1+2)=e(1+2)(2(1+2))f(-1+\sqrt{2}) = e^{(-1+\sqrt{2})}(2(-1+\sqrt{2})) f(1+2)=2(21)e21f(-1+\sqrt{2}) = 2(\sqrt{2}-1)e^{\sqrt{2}-1}

    • Local Minimum Value (at x=12x = -1-\sqrt{2}): f(12)=e(12)(2(12))f(-1-\sqrt{2}) = e^{(-1-\sqrt{2})}(2(-1-\sqrt{2})) f(12)=2(1+2)e12f(-1-\sqrt{2}) = -2(1+\sqrt{2})e^{-1-\sqrt{2}}