Question
Question: Find the local maxima and minima for the function f(x)=e^x(1-x^2)...
Find the local maxima and minima for the function f(x)=e^x(1-x^2)

Local maximum at x = √2-1 with value 2(√2-1)e^(√2-1), local minimum at x = -1-√2 with value -2(1+√2)e^(-1-√2)
Solution
To find the local maxima and minima for the function f(x)=ex(1−x2), we follow these steps:
-
Find the first derivative, f′(x): Using the product rule, (uv)′=u′v+uv′, where u=ex and v=1−x2: u′=ex v′=−2x f′(x)=ex(1−x2)+ex(−2x) f′(x)=ex(1−x2−2x) f′(x)=ex(−x2−2x+1)
-
Find the critical points by setting f′(x)=0: ex(−x2−2x+1)=0 Since ex>0 for all real x, we must have: −x2−2x+1=0 x2+2x−1=0 Using the quadratic formula x=2a−b±b2−4ac: x=2(1)−2±22−4(1)(−1) x=2−2±4+4 x=2−2±8 x=2−2±22 x=−1±2 The critical points are x1=−1+2 and x2=−1−2.
-
Find the second derivative, f′′(x): Using the product rule on f′(x)=ex(−x2−2x+1), where u=ex and v=−x2−2x+1: u′=ex v′=−2x−2 f′′(x)=ex(−x2−2x+1)+ex(−2x−2) f′′(x)=ex(−x2−2x+1−2x−2) f′′(x)=ex(−x2−4x−1) Alternatively, since −x2−2x+1=0 at critical points, we can write f′′(x)=ex(−2x−2) for evaluation at critical points.
-
Apply the second derivative test:
-
At x1=−1+2: f′′(−1+2)=e(−1+2)(−2(−1+2)−2) f′′(−1+2)=e(−1+2)(2−22−2) f′′(−1+2)=e(−1+2)(−22) Since e(−1+2)>0 and −22<0, f′′(−1+2)<0. Therefore, x1=−1+2 is a point of local maximum.
-
At x2=−1−2: f′′(−1−2)=e(−1−2)(−2(−1−2)−2) f′′(−1−2)=e(−1−2)(2+22−2) f′′(−1−2)=e(−1−2)(22) Since e(−1−2)>0 and 22>0, f′′(−1−2)>0. Therefore, x2=−1−2 is a point of local minimum.
-
-
Calculate the local maximum and minimum values: For the critical points, we know that x2+2x−1=0, which implies 1−x2=2x. So, f(x)=ex(1−x2)=ex(2x) at the critical points.
-
Local Maximum Value (at x=−1+2): f(−1+2)=e(−1+2)(2(−1+2)) f(−1+2)=2(2−1)e2−1
-
Local Minimum Value (at x=−1−2): f(−1−2)=e(−1−2)(2(−1−2)) f(−1−2)=−2(1+2)e−1−2
-