Solveeit Logo

Question

Question: Find the limit, when n ® of \(\frac{(n!)^{1/n}}{n}\)...

Find the limit, when n ® of (n!)1/nn\frac{(n!)^{1/n}}{n}

A

e

B

1e2\frac{1}{e^{2}}

C

1e\frac{1}{e}

D

e2

Answer

1e\frac{1}{e}

Explanation

Solution

Let P = (n!)1/nn\frac { ( \mathrm { n } ! ) ^ { 1 / n } } { n }

= =

=

=

Taking logarithm then

ln P =

=

= (1n x . x – x) 01\left. \right| _ { 0 } ^ { 1 }

= – 1 – 0

= –1

Hence P = e–1 = 1/e.