Solveeit Logo

Question

Question: Find the limit of \({x^{\sin \left( x \right)}}\) as \[x\] approaches 0....

Find the limit of xsin(x){x^{\sin \left( x \right)}} as xx approaches 0.

Explanation

Solution

We know that we say the limit of f(x)f\left( x \right) is LL as xx approaches aa, i.e. limxaf(x)=L\mathop {\lim }\limits_{x \to a} f\left( x \right) = L
Also we have to make f(x)f\left( x \right) as close to LL and xx as close to aa from both the sides and not letting it be aa. So by using the above statement and expression we can solve the given question.

Complete step by step solution:
Given
xsin(x)............................(i){x^{\sin \left( x \right)}}............................\left( i \right)

Now on comparing the question and the statement of limit we can say thata=0andf(x)=xsinxa = 0\,\,{\text{and}}\,\,{\text{f}}\left( x \right) = {x^{\sin x}}. Since here f(x)=xsinx{\text{f}}\left( x \right) = {x^{\sin x}} it’s difficult to find its limit directly so it’s better to use some logarithmic functions since in some logarithmic functions the power can be extracted and used as a multiplier.

So converting our given f(x)=xsinx{\text{f}}\left( x \right) = {x^{\sin x}} to a form where we can directly find its limit.

Let:
L=limx0xsinx........................(ii)L = \mathop {\lim }\limits_{x \to 0} {x^{\sin x}}........................(ii)

Now let’s take ln\ln on both sides since we can use the power as a multiplier by the power rule.
lnL=lnlimx0xsinx lnL=limx0lnxsinx  \Rightarrow \ln L = \ln \mathop {\lim }\limits_{x \to 0} {x^{\sin x}} \\\ \Rightarrow \ln L = \mathop {\lim }\limits_{x \to 0} \ln {x^{\sin x}} \\\
Now by using the power rule we can write:
lnL=limx0sinxlnx lnL=limx0lnx(1sinx) lnL=limx0lnxcosecx....................(iii)  \Rightarrow \ln L = \mathop {\lim }\limits_{x \to 0} \sin x\ln x \\\ \Rightarrow \ln L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\ln x}}{{\left( {\dfrac{1}{{\sin x}}} \right)}} \\\ \Rightarrow \ln L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\ln x}}{{{\text{cosec}}x}}....................\left( {iii} \right) \\\
Now if we apply the limit zero to both numerator and denominator we see that we get \dfrac{\infty }{\infty } which is indeterminate.

So in such cases we have to apply L’Hospital’s Rule.

It simply states that whenever we get an indeterminate form we have to find the derivative of both numerator and denominator of the fraction and apply the limit.

So applying L’Hospital’s Rule in (iii), we get:
limx0lnxcosecx=limx0(1x)cosecxcotx =limx0sinxtanxx...............(iv)  \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\ln x}}{{{\text{cosec}}x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{1}{x}} \right)}}{{ - \cos {\text{ec}}x\cot x}} \\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop { - \lim }\limits_{x \to 0} \dfrac{{\sin x\tan x}}{x}...............\left( {iv} \right) \\\
Again if we apply the limit zero to both numerator and denominator we see that we get \dfrac{\infty }{\infty }which is indeterminate.

So again applying L’Hospital’s Rule in (iv), we get:
limx0sinxtanxx=limx0cosxtanx+sinxsec2x1 limx0sinxtanxx=0..........................(v)   \Rightarrow \mathop { - \lim }\limits_{x \to 0} \dfrac{{\sin x\tan x}}{x} = - \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos x\tan x + \sin x{{\sec }^{2x}}}}{1} \\\ \Rightarrow \mathop { - \lim }\limits_{x \to 0} \dfrac{{\sin x\tan x}}{x} = - 0..........................\left( v \right) \\\ \\\
Now we can write from (iii):
lnL=0 L=e0=1..........................(vi)  \Rightarrow \ln L = - 0 \\\ \Rightarrow L = {e^{ - 0}} = 1..........................\left( {vi} \right) \\\
Thereforelimx0xsinx=1\mathop {\lim }\limits_{x \to 0} {x^{\sin x}} = 1.

Note: We know that:

dsinxtanxdx=sinx+tanxsecx =sec2xsinx+tanxsecx \dfrac{{d\sin x\tan x}}{{dx}} = \sin x + \tan x\sec x \\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\sec ^2}x\sin x + \tan x\sec x \\\

The above given approach for finding limits for similar problems is preferred due to its easier steps and processes.