Question
Question: Find the limit of given sum of a series \(\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}...
Find the limit of given sum of a series n→∞limn100199+299+…+n99=
(a) 1001
(b) 3
(c) 31
(d) 1
Solution
Hint: Here we find the sum of first natural numbers to power , then use some algebraic operation and also take the help of limit properties to solve the given problem.
Complete step-by-step solution -
The sum of first n natural numbers to power one can be written as,
11+21+…+n1=2n(n+1)=2n2+2n
Similarly, the sum of first n natural numbers to power two can be written as,
12+22+…+n2=6n(n+1)(2n+1)
12+22+…+n2=6(n2+n)(2n+1)
12+22+…+n2=62n3+n2+2n2+n
12+22+…+n2=3n3+2n2+6n
The sum of first n natural numbers to power three can be written as,
13+23+…+n3=(2n(n+1))2
13+23+…+n3=4n2(n2+2n+1)
13+23+…+n3=4n4+2n3+n2
13+23+…+n3=4n4+2n3+4n2
Generalizing this, we get
1x+2x+…+nx=x+1nx+1+k1nx+k2nx−1+…
Now substituting (x=99), we get
199+299+…+n99=99+1n99+1+k1n99+k2n99−1+…
Now the given expression becomes,
n→∞limn100199+299+…+n99=n→∞limn10099+1n99+1+k1n99+k2n99−1+…
⇒n→∞limn100199+299+…+n99=n→∞limn100100n100+k1n99+k2n98+…
⇒n→∞limn100199+299+…+n99=n→∞lim100n100n100+n100k1n99+n100k2n98+…
⇒n→∞limn100199+299+…+n99=n→∞lim1001+nk1+n2k2+…
Applying the limits, we get
⇒n→∞limn100199+299+…+n99=1001+∞k1+∞k2+…
We know, ∞1 tends to zero, so
⇒n→∞limn100199+299+…+n99=1001+0+0+…
⇒n→∞limn100199+299+…+n99=1001
Hence, the correct option for the given question is option (a).