Solveeit Logo

Question

Question: Find the limit of given sum of a series \(\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}...

Find the limit of given sum of a series limn199+299++n99n100=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=
(a) 1100\dfrac{1}{100}
(b) 33
(c) 13\dfrac{1}{3}
(d) 11

Explanation

Solution

Hint: Here we find the sum of first natural numbers to power , then use some algebraic operation and also take the help of limit properties to solve the given problem.

Complete step-by-step solution -
The sum of first n natural numbers to power one can be written as,
11+21++n1=n(n+1)2=n22+n2{{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\dfrac{n\left( n+1 \right)}{2}=\dfrac{{{n}^{2}}}{2}+\dfrac{n}{2}
Similarly, the sum of first n natural numbers to power two can be written as,
12+22++n2=n(n+1)(2n+1)6{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}
12+22++n2=(n2+n)(2n+1)6{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}
12+22++n2=2n3+n2+2n2+n6{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}
12+22++n2=n33+n22+n6{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{{{n}^{3}}}{3}+\dfrac{{{n}^{2}}}{2}+\dfrac{n}{6}
The sum of first n natural numbers to power three can be written as,
13+23++n3=(n(n+1)2)2{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}
13+23++n3=n2(n2+2n+1)4{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}
13+23++n3=n4+2n3+n24{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}
13+23++n3=n44+n32+n24{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{4}}}{4}+\dfrac{{{n}^{3}}}{2}+\dfrac{{{n}^{2}}}{4}
Generalizing this, we get
1x+2x++nx=nx+1x+1+k1nx+k2nx1+{{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\dfrac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots
Now substituting (x=99x=99), we get
199+299++n99=n99+199+1+k1n99+k2n991+{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\dfrac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots
Now the given expression becomes,
limn199+299++n99n100=limnn99+199+1+k1n99+k2n991+n100\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}
limn199+299++n99n100=limnn100100+k1n99+k2n98+n100\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}
limn199+299++n99n100=limnn100100n100+k1n99n100+k2n98n100+\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{n}^{100}}}{100{{n}^{100}}}+\dfrac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\dfrac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots
limn199+299++n99n100=limn1100+k1n+k2n2+\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{100}+\dfrac{{{k}_{1}}}{n}+\dfrac{{{k}_{2}}}{{{n}^{2}}}+\ldots
Applying the limits, we get
limn199+299++n99n100=1100+k1+k2+\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}+\dfrac{{{k}_{1}}}{\infty }+\dfrac{{{k}_{2}}}{\infty }+\ldots
We know, 1\dfrac{1}{\infty } tends to zero, so
limn199+299++n99n100=1100+0+0+\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}+0+0+\ldots
limn199+299++n99n100=1100\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}
Hence, the correct option for the given question is option (a).