Solveeit Logo

Question

Question: Find the limit of \(\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+...

Find the limit of limx0e1x1e1x+1\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+1}.
A. 1
B. -1
C. 0
D. does not exist

Explanation

Solution

We first need to find if the limit even exists or not. If the limit exists then we find its value. For the function to have a limit value its left-hand limit and right-hand limit both have to be equal. We assume small value h0+h\to {{0}^{+}} and find both limh0e1h1e1h+1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{-h}}}-1}{{{e}^{\dfrac{1}{-h}}}+1} and limh0e1h1e1h+1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{h}}}-1}{{{e}^{\dfrac{1}{h}}}+1}. The values don’t match and that’s why the limit of the limx0e1x1e1x+1\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+1} doesn’t exist.

Complete step-by-step solution
To find the limit of the function limx0e1x1e1x+1\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+1}, we first need to check if the limit exists or not.
The limit of f(x)f\left( x \right) exists at a when limxa+f(x)=limxaf(x)\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right). This means the left-hand limit and right-hand limit both are equal then only the actual limit exists.
Let us check the left-hand limit of limx0e1x1e1x+1\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+1}. We are finding the limit at 0. 0{{0}^{-}} defines the small value at the negative end. Let’s take it as (0h)=h\left( 0-h \right)=-h where h0+h\to {{0}^{+}}. We find the limit value as limh0e1h1e1h+1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{-h}}}-1}{{{e}^{\dfrac{1}{-h}}}+1}. We find individual values.
The value of “h” is very small, and the inverse will be very big. So, e1h{{e}^{\dfrac{1}{h}}}\to \infty .
Then we are taking negative of it which means e1h=1e1h0{{e}^{\dfrac{1}{-h}}}=\dfrac{1}{{{e}^{\dfrac{1}{h}}}}\to 0.
Now we place the values in limh0e1h1e1h+1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{-h}}}-1}{{{e}^{\dfrac{1}{-h}}}+1}.
limh0e1h1e1h+1=11=1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{-h}}}-1}{{{e}^{\dfrac{1}{-h}}}+1}=\dfrac{-1}{1}=-1.
Now we check the right-hand limit of limx0e1x1e1x+1\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+1}. We are finding the limit at 0. 0+{{0}^{+}} defines the small value at the positive end. Let’s take it as (0+h)=h\left( 0+h \right)=h where h0+h\to {{0}^{+}}. We find the limit value as limh0e1h1e1h+1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{h}}}-1}{{{e}^{\dfrac{1}{h}}}+1}. We find individual values.
The value of “h” is very small, and the inverse will be very big. So, e1h{{e}^{\dfrac{1}{h}}}\to \infty .
Now we place the values in limh0e1h1e1h+1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{h}}}-1}{{{e}^{\dfrac{1}{h}}}+1}. In this both denominator and numerator the total values of e1h1{{e}^{\dfrac{1}{h}}}-1 and e1h+1{{e}^{\dfrac{1}{h}}}+1 tends to infinity. So, if h0+h\to {{0}^{+}} then e1h1,e1h+1{{e}^{\dfrac{1}{h}}}-1\to \infty ,{{e}^{\dfrac{1}{h}}}+1\to \infty .
limh0e1h1e1h+1==1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{h}}}-1}{{{e}^{\dfrac{1}{h}}}+1}=\dfrac{\infty }{\infty }=1.
So, we can see the two-limit value doesn’t match. limxa+f(x)limxaf(x)\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\ne \displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right).
So, the limit limx0e1x1e1x+1\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+1} doesn’t exist. The correct option is D.

Note: If the notion limh0e1h1e1h+1==1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{h}}}-1}{{{e}^{\dfrac{1}{h}}}+1}=\dfrac{\infty }{\infty }=1 is tough to understand then we can use L’hospital rule where in case of ,00\dfrac{\infty }{\infty },\dfrac{0}{0} form we use differentiation of both numerator and denominator.
So, limh0e1h1e1h+1=limh0e1he1h×1h21h2=limh01=1\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{h}}}-1}{{{e}^{\dfrac{1}{h}}}+1}=\displaystyle \lim_{h\to 0}\dfrac{{{e}^{\dfrac{1}{h}}}}{{{e}^{\dfrac{1}{h}}}}\times \dfrac{\dfrac{-1}{{{h}^{2}}}}{\dfrac{-1}{{{h}^{2}}}}=\displaystyle \lim_{h\to 0}1=1.
This way we can express the limit and find that the limit of limx0e1x1e1x+1\displaystyle \lim_{x \to 0}\dfrac{{{e}^{\dfrac{1}{x}}}-1}{{{e}^{\dfrac{1}{x}}}+1} doesn’t exist.