Solveeit Logo

Question

Question: Find the limit: $\lim_{x \to 0} \frac{ln(1+3x)}{x}$...

Find the limit:

limx0ln(1+3x)x\lim_{x \to 0} \frac{ln(1+3x)}{x}

Answer

3

Explanation

Solution

The limit is of the 00\frac{0}{0} indeterminate form. Using the standard limit limu0ln(1+u)u=1\lim_{u \to 0} \frac{\ln(1+u)}{u} = 1, we manipulate the expression:

limx0ln(1+3x)x=limx0ln(1+3x)3x3\lim_{x \to 0} \frac{\ln(1+3x)}{x} = \lim_{x \to 0} \frac{\ln(1+3x)}{3x} \cdot 3.

Let u=3xu = 3x. As x0x \to 0, u0u \to 0.

The limit becomes 3limu0ln(1+u)u=31=33 \cdot \lim_{u \to 0} \frac{\ln(1+u)}{u} = 3 \cdot 1 = 3.