Question
Question: Find the limit: \(\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x...
Find the limit: x→0limxsinxex−e−x−2ln(1+x).
Solution
Using different limit formulas we first try to break the given limit into a sum of three limits. We apply the limit theorems to find their values in number. We try to break the limit and keep the part of x→0limsinx1 separate. The other part gives us a value of 0 and in multiplication the total value of the limit becomes 0.
Complete step-by-step answer:
To find the limit value of the given limits we are going to use some limit forms.
We know that x→alim[f(x)±g(x)]=x→alimf(x)±x→alimg(x).
Also, we have x→alim[f(x).g(x)]=x→alimf(x)×x→alimg(x) and x→alim[g(x)f(x)]=x→alimg(x)x→alimf(x).
We first try to keep only x in the denominator.
So, x→0limxsinxex−e−x−2ln(1+x)=x→0limxex−e−x−2ln(1+x)×x→0limsinx1
Let’s assume x→0limsinx1=a and try to solve the rest of the limit.
We have been given a number of functions and we are going to break them.
x→0limxex−e−x−2ln(1+x)=x→0limxex−1+1−e−x−2ln(1+x)=x→0limxex−1+x→0limx1−e−x−x→0limx2ln(1+x)=x→0limxex−1−x→0limxe−x−1−x→0limx2ln(1+x)
We know x→0limxln(1+x)=1,x→0limxex−1=1.
For the second limit in the expansion, for x→0limxe−x−1 we will change the variable to keep it true to the property.
Let’s assume z=−x. Now if x→0⇒z→0.
So, x→0limxe−x−1=z→0lim−zez−1
So, putting the values we get