Solveeit Logo

Question

Question: Find the limit as \[x\] approaches infinity of \[x\sin \left( {\dfrac{1}{x}} \right)\]...

Find the limit as xx approaches infinity of xsin(1x)x\sin \left( {\dfrac{1}{x}} \right)

Explanation

Solution

Hint : In order to solve this question, we first substitute \infty at the place of xx then we see we end up with the indeterminate form of 0\infty \cdot 0 .So, we need to rewrite this function so that it produces an indeterminate in the form of either \dfrac{\infty }{\infty } or 00\dfrac{0}{0} .After that we apply L-Hospital Rule which basically says to differentiate both numerator and denominator independently with respect to xx .and then simplify it to get the result.

Complete step-by-step answer :
We are given a function, i.e., xsin(1x)x\sin \left( {\dfrac{1}{x}} \right)
And we have to find the limit as xx approaches infinity
i.e., we have to find limx xsin(1x)\mathop {\lim }\limits_{x \to \infty } {\text{ }}x\sin \left( {\dfrac{1}{x}} \right)
So, first we substitute \infty at the place of xx we get
limx xsin(1x)=sin(1)\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{ x}}\sin \left( {\dfrac{1}{x}} \right) = \infty \sin \left( {\dfrac{1}{\infty }} \right)
We know that 1=0\dfrac{1}{\infty } = 0
limx xsin(1x)=sin(0)=0\therefore \mathop {\lim }\limits_{x \to \infty } {\text{ }}x\sin \left( {\dfrac{1}{x}} \right) = \infty \sin \left( 0 \right) = \infty \cdot 0
Here, we see we end up with the indeterminate form of 0\infty \cdot 0 . So, we need to rewrite this function so that it produces an indeterminate in the form of either \dfrac{\infty }{\infty } or 00\dfrac{0}{0}
So, we can write xsin(1x)x\sin \left( {\dfrac{1}{x}} \right) as sin(1x)x1\dfrac{{\sin \left( {\dfrac{1}{x}} \right)}}{{{x^{ - 1}}}}
limx sin(1x)x1=limxsin(1x)1x\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{\sin \left( {\dfrac{1}{x}} \right)}}{{{x^{ - 1}}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sin \left( {\dfrac{1}{x}} \right)}}{{\dfrac{1}{x}}}
On substituting \infty at the place of xx we get,
limx sin(1x)1x=sin(1)1\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{\sin \left( {\dfrac{1}{x}} \right)}}{{\dfrac{1}{x}}} = \dfrac{{\sin \left( {\dfrac{1}{\infty }} \right)}}{{\dfrac{1}{\infty }}}
Now we know that 1=0\dfrac{1}{\infty } = 0
limx sin(1x)1x = sin(0)0=00\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{\sin \left( {\dfrac{1}{x}} \right)}}{{\dfrac{1}{x}}}{\text{ = }}\dfrac{{\sin \left( 0 \right)}}{0} = \dfrac{0}{0} which is an indeterminate form of 00\dfrac{0}{0}
So, now we apply L-Hospital Rule:
which basically says to differentiate both numerator and denominator independently with respect to xx
Therefore, on applying L-Hospital Rule,
limx ddx(sin(1x))ddx(1x)\mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{\dfrac{d}{{dx}}\left( {\sin \left( {\dfrac{1}{x}} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right)}}
We know that,
d(sinx)dx=cosx\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x and d(1x)dx=1x2=(1)x2\dfrac{{d\left( {\dfrac{1}{x}} \right)}}{{dx}} = \dfrac{{ - 1}}{{{x^2}}} = \left( { - 1} \right){x^{ - 2}}
Therefore, we get
limx cos(1x)(1)x2(1)x2\mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{\cos \left( {\dfrac{1}{x}} \right)\left( { - 1} \right){x^{ - 2}}}}{{\left( { - 1} \right){x^{ - 2}}}}
On cancelling (1)x2\left( { - 1} \right){x^{ - 2}} from numerator and denominator, we get
limx cos(1x)\mathop {\lim }\limits_{x \to \infty } {\text{ }}\cos \left( {\dfrac{1}{x}} \right)
On substituting \infty at the place of xx we get,
limx cos(1x)=cos(1)\mathop {\lim }\limits_{x \to \infty } {\text{ }}\cos \left( {\dfrac{1}{x}} \right) = \cos \left( {\dfrac{1}{\infty }} \right)
Now we know that 1=0\dfrac{1}{\infty } = 0
limx cos(1x)=cos(0)\mathop {\lim }\limits_{x \to \infty } {\text{ }}\cos \left( {\dfrac{1}{x}} \right) = \cos \left( 0 \right)
We know that cos(0)=1\cos \left( 0 \right) = 1
So, limx cos(1x)=1\mathop {\lim }\limits_{x \to \infty } {\text{ }}\cos \left( {\dfrac{1}{x}} \right) = 1 which is our required answer.
Hence, limx xsin(1x)=1\mathop {\lim }\limits_{x \to \infty } {\text{ }}x\sin \left( {\dfrac{1}{x}} \right) = 1
So, the correct answer is “1”.

Note : Instead of L-Hospital Rule, one can use the fundamental trigonometric limit: limh0 sinhh=1\mathop {\lim }\limits_{h \to 0} {\text{ }}\dfrac{{\sinh }}{h} = 1
So, the limit given can be written as:
limx sin(1x)(1x)\mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{\sin \left( {\dfrac{1}{x}} \right)}}{{\left( {\dfrac{1}{x}} \right)}}
Now, as xx \to \infty , we know that 1x0\dfrac{1}{x} \to 0
Therefore, we get
lim1x0 sin(1x)(1x)\mathop {\lim }\limits_{\dfrac{1}{x} \to 0} {\text{ }}\dfrac{{\sin \left( {\dfrac{1}{x}} \right)}}{{\left( {\dfrac{1}{x}} \right)}}
Now, with h=1xh = \dfrac{1}{x}
This becomes, limh0 sinhh\mathop {\lim }\limits_{h \to 0} {\text{ }}\dfrac{{\sinh }}{h} which is 11