Solveeit Logo

Question

Question: Find the lengths of tangent, subtangent, normal and subnormal to y<sup>2</sup> = 4ax at (at<sup>2</...

Find the lengths of tangent, subtangent, normal and

subnormal to y2 = 4ax at (at2, 2at) –

A

2at1+t2\sqrt{1 + t^{2}}, 2at2+1\sqrt{t^{2} + 1}, 2at2, 2a

B

2at2+1\sqrt{t^{2} + 1}, 2at2, 2a, 2at1+t2\sqrt{1 + t^{2}}

C

2t2+1\sqrt{t^{2} + 1}, 2at1+t2\sqrt{1 + t^{2}}, 2a, 2a t2

D

None of these

Answer

2at1+t2\sqrt{1 + t^{2}}, 2at2+1\sqrt{t^{2} + 1}, 2at2, 2a

Explanation

Solution

We have the given curve,

y2 = 4ax … (i)

Differentiating equation (i) both sides w.r.t. x, we get

2y dydx\frac{dy}{dx} = 4a

[dydx](at2,2at)\left\lbrack \frac{dy}{dx} \right\rbrack_{(at^{2},2at)} = 4a4at\frac{4a}{4at} = 1t\frac{1}{t} … (ii)

Now, the length of tangent at (at2, 2at) is

= y11+(dxdy)(x1,y1)2y_{1}\sqrt{1 + \left( \frac{dx}{dy} \right)_{(x_{1},y_{1})}^{2}}

Ž = 2at 1+t2\sqrt{1 + t^{2}}

[using (ii)]

\ Length of normal at (at2, 2at) is

Ž = y11+(dydx)(x1,y1)2y_{1}\sqrt{1 + \left( \frac{dy}{dx} \right)_{(x_{1},y_{1})}^{2}}

Ž = 2at 1+1/t2\sqrt{1 + 1/t^{2}}

Ž = 2a t2+1\sqrt{t^{2} + 1}

\ Length of subtangent Ž y1[dydx](x1,y1)\frac{y_{1}}{\left\lbrack \frac{dy}{dx} \right\rbrack_{(x_{1},y_{1})}}= 2at1/t\frac{2at}{1/t} = 2at2

Length of subnormal Ž y1[dydx](x1,y1)\left\lbrack \frac{dy}{dx} \right\rbrack_{(x_{1},y_{1})} = 2at . 1t\frac{1}{t} = 2a.