Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the length of perpendicular from origin to the plane r(3i^4j^12k^)+39=0\vec{r}\cdot\left(3\hat{i}-4\hat{j}-12\hat{k}\right)+39=0

A

11

B

33

C

17\frac{1}{7}

D

none of these

Answer

33

Explanation

Solution

The equation of the plane is r(3i^4j^12k^)=39\vec{r}\cdot\left(3\hat{i}-4\hat{j}-12\hat{k}\right)=-39 or r(3i^+4j^+12k^)=39\vec{r}\cdot\left(-3\hat{i}+4\hat{j}+12\hat{k}\right)=39 Now, n=(3)2+42+122=13\left|\vec{n}\right|=\sqrt{\left(-3\right)^{2}+4^{2}+12^{2}}=13 \therefore Required distance d=39n=3913=3d=\frac{39}{\left|\vec{n}\right|}=\frac{39}{13}=3. Hence, the length of perpendicular from origin to the given plane is 33.