Solveeit Logo

Question

Question: Find the length of focal chord AB of parabola when (i) length of latus rectum is 8, 'S' be the focus...

Find the length of focal chord AB of parabola when (i) length of latus rectum is 8, 'S' be the focus and ASBS=34\frac{AS}{BS} = \frac{3}{4}

A

49/6

B

25/3

C

36/5

D

16/3

Answer

49/6

Explanation

Solution

Let the parabola be y2=4axy^2 = 4ax. The length of the latus rectum is 4a=84a = 8, so a=2a = 2. For a focal chord AB, let AS=l1AS = l_1 and BS=l2BS = l_2. We are given l1l2=34\frac{l_1}{l_2} = \frac{3}{4}. The relation for a focal chord is 1AS+1BS=1a\frac{1}{AS} + \frac{1}{BS} = \frac{1}{a}. Substituting the ratio, let l1=3kl_1 = 3k and l2=4kl_2 = 4k. 13k+14k=12\frac{1}{3k} + \frac{1}{4k} = \frac{1}{2} 4+312k=12\frac{4+3}{12k} = \frac{1}{2} 712k=12\frac{7}{12k} = \frac{1}{2} 12k=14    k=1412=7612k = 14 \implies k = \frac{14}{12} = \frac{7}{6} Then AS=l1=3×76=72AS = l_1 = 3 \times \frac{7}{6} = \frac{7}{2} and BS=l2=4×76=143BS = l_2 = 4 \times \frac{7}{6} = \frac{14}{3}. The length of the focal chord AB is AS+BS=72+143=21+286=496AS + BS = \frac{7}{2} + \frac{14}{3} = \frac{21 + 28}{6} = \frac{49}{6}.