Solveeit Logo

Question

Question: Find the least positive integer value of ‘n’ for which \({{\left( \dfrac{1+i}{1-i} \right)}^{n}}\) i...

Find the least positive integer value of ‘n’ for which (1+i1i)n{{\left( \dfrac{1+i}{1-i} \right)}^{n}} is real.

Explanation

Solution

Hint: Use the fact that we can simplify the expression of the form a+ibc+id\dfrac{a+ib}{c+id} by multiplying and dividing it by cidc-id. Simplify the given expression and then further use the fact that i=1i=\sqrt{-1} to calculate higher powers of ii. Then observe the least value of ‘n’ for which the expression (1+i1i)n{{\left( \dfrac{1+i}{1-i} \right)}^{n}} is real.

Complete step-by-step solution -
We have to calculate the least positive integral value of ‘n’ for which (1+i1i)n{{\left( \dfrac{1+i}{1-i} \right)}^{n}} is real.
We will first simplify the expression 1+i1i\dfrac{1+i}{1-i}.
We know that we can simplify the expression of the form a+ibc+id\dfrac{a+ib}{c+id} by multiplying and dividing it by cidc-id.
Substituting a=1,b=1,c=1,d=1a=1,b=1,c=1,d=-1 in the above expression, we can rewrite 1+i1i\dfrac{1+i}{1-i} as 1+i1i=1+i1i×1+i1+i=(1+i)2(1+i)(1i)\dfrac{1+i}{1-i}=\dfrac{1+i}{1-i}\times \dfrac{1+i}{1+i}=\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 1+i \right)\left( 1-i \right)}.
We know the algebraic identities (x+y)2=x2+y2+2xy{{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy and (x+y)(xy)=x2y2\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}.
Thus, we can simplify the expression 1+i1i=1+i1i×1+i1+i=(1+i)2(1+i)(1i)\dfrac{1+i}{1-i}=\dfrac{1+i}{1-i}\times \dfrac{1+i}{1+i}=\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 1+i \right)\left( 1-i \right)} as 1+i1i=(1+i)2(1+i)(1i)=12+i2+2(1)(i)12(i)2\dfrac{1+i}{1-i}=\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 1+i \right)\left( 1-i \right)}=\dfrac{{{1}^{2}}+{{i}^{2}}+2\left( 1 \right)\left( i \right)}{{{1}^{2}}-{{\left( i \right)}^{2}}}.
We know that i=1i=\sqrt{-1}. Thus, we have i2=(1)2=1{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1.
So, we can rewrite the expression 1+i1i=(1+i)2(1+i)(1i)=12+i2+2(1)(i)12(i)2\dfrac{1+i}{1-i}=\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 1+i \right)\left( 1-i \right)}=\dfrac{{{1}^{2}}+{{i}^{2}}+2\left( 1 \right)\left( i \right)}{{{1}^{2}}-{{\left( i \right)}^{2}}} as 1+i1i=12+i2+2(1)(i)12(i)2=11+2i1(1)=2i1+1=2i2=i\dfrac{1+i}{1-i}=\dfrac{{{1}^{2}}+{{i}^{2}}+2\left( 1 \right)\left( i \right)}{{{1}^{2}}-{{\left( i \right)}^{2}}}=\dfrac{1-1+2i}{1-\left( -1 \right)}=\dfrac{2i}{1+1}=\dfrac{2i}{2}=i.
Thus, we can rewrite the expression (1+i1i)n{{\left( \dfrac{1+i}{1-i} \right)}^{n}} as (1+i1i)n=in{{\left( \dfrac{1+i}{1-i} \right)}^{n}}={{i}^{n}}.
We will now calculate the smallest integral value of ‘n’ for which the expression in{{i}^{n}} is real.
We know that i=1i=\sqrt{-1}. Thus, we have i2=(1)2=1{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1.
So, we observe (1+i1i)n=in{{\left( \dfrac{1+i}{1-i} \right)}^{n}}={{i}^{n}} takes value -1 for n=2n=2.
Hence, the smallest positive value of n for which (1+i1i)n{{\left( \dfrac{1+i}{1-i} \right)}^{n}} has real value is n=2n=2.

Note: We can’t solve this question without simplifying the expression 1+i1i\dfrac{1+i}{1-i} and using the algebraic identities. We can write any complex number in the form a+iba+ib, where ibib is the imaginary part and aa is the real part.