Solveeit Logo

Question

Mathematics Question on The Fundamental Theorem of Arithmetic

Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF = product of the two numbers.

  1. 2626 and 9191
  2. 510510 $$and 9292
  3. 336336 and 5454
Answer

(i) 2626 and 9191
26=2×1326=2×13
91=7×1391=7×13
HCF =13= 13
LCM=2×7×13=182=2×7×13=182
Product ××of the two numbers =26×91=2366= 26×91=2366
HCF××LCM=13×182=2366=13×182=2366

Hence, product of two numbers = HCF ×× LCM


(ii) 510510 and 9292
510=2×3×5×17510=2×3×5×17
92=2×2×2392=2×2×23
HCF =2= 2
LCM=2×2×3×5×17×23=23460=2×2×3×5×17×23=23460
Product of the two numbers =510×92=46920= 510×92=46920
HCF××LCM=2×23460=2×23460
=46920= 46920

Hence, product of two numbers = HCF ×× LCM


(iii) 336336 and 5454
336=2×2×2×2×3×7336=2×2×2×2×3×7
336=24×3×7336=2^4×3×7
54=2×3×3×354=2×3×3×3
54=2×3354=2×3^3
HCF=2×3=6=2×3=6
LCM=24×33×7=3024=2^4×3^3×7=3024
Product of the two numbers =336×54=18144= 336×54=18144
HCF××LCM=6×3024=18144=6×3024=18144

Hence, product of two numbers = HCF ×× LCM