Question
Question: Find the Laplace Transform $L[e^{-2t}t \sin(2t) \cos(3t)]$. ...
Find the Laplace Transform L[e−2ttsin(2t)cos(3t)].

(s+2)((s2+4s+29)25−(s2+4s+5)21)
Solution
To find the Laplace Transform of f(t)=e−2ttsin(2t)cos(3t), we follow these steps:
-
Trigonometric Simplification: Use the product-to-sum identity sinAcosB=21[sin(A+B)+sin(A−B)]. sin(2t)cos(3t)=21[sin(2t+3t)+sin(2t−3t)]=21[sin(5t)+sin(−t)]=21[sin(5t)−sin(t)].
-
Rewrite the function: f(t)=e−2tt(21[sin(5t)−sin(t)])=21e−2t(tsin(5t)−tsin(t)).
-
Apply Linearity: The Laplace Transform is linear. L[f(t)]=21(L[e−2ttsin(5t)]−L[e−2ttsin(t)]).
-
Laplace Transform of tsin(ωt): Use the property L[tg(t)]=−dsdG(s), where G(s)=L[g(t)]. We know L[sin(ωt)]=s2+ω2ω. L[tsin(ωt)]=−dsd(s2+ω2ω)=(s2+ω2)22sω.
-
Calculate individual transforms:
- For tsin(5t) (ω=5): L[tsin(5t)]=(s2+52)22s(5)=(s2+25)210s.
- For tsin(t) (ω=1): L[tsin(t)]=(s2+12)22s(1)=(s2+1)22s.
-
Apply First Shifting Theorem: L[eatg(t)]=G(s−a). Here a=−2.
- L[e−2ttsin(5t)]=((s+2)2+25)210(s+2).
- L[e−2ttsin(t)]=((s+2)2+1)22(s+2).
-
Combine results: L[f(t)]=21(((s+2)2+25)210(s+2)−((s+2)2+1)22(s+2)).
-
Simplify: L[f(t)]=(s+2)(((s+2)2+25)25−((s+2)2+1)21). Substitute (s+2)2=s2+4s+4: L[f(t)]=(s+2)((s2+4s+4+25)25−(s2+4s+4+1)21) L[f(t)]=(s+2)((s2+4s+29)25−(s2+4s+5)21).