Solveeit Logo

Question

Question: Find the Laplace Transform $L[e^{-2t}t \sin(2t) \cos(3t)]$. ...

Find the Laplace Transform L[e2ttsin(2t)cos(3t)]L[e^{-2t}t \sin(2t) \cos(3t)].

Answer

(s+2)(5(s2+4s+29)21(s2+4s+5)2)(s+2) \left( \frac{5}{(s^2 + 4s + 29)^2} - \frac{1}{(s^2 + 4s + 5)^2} \right)

Explanation

Solution

To find the Laplace Transform of f(t)=e2ttsin(2t)cos(3t)f(t) = e^{-2t}t \sin(2t) \cos(3t), we follow these steps:

  1. Trigonometric Simplification: Use the product-to-sum identity sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]. sin(2t)cos(3t)=12[sin(2t+3t)+sin(2t3t)]=12[sin(5t)+sin(t)]=12[sin(5t)sin(t)]\sin(2t)\cos(3t) = \frac{1}{2}[\sin(2t+3t) + \sin(2t-3t)] = \frac{1}{2}[\sin(5t) + \sin(-t)] = \frac{1}{2}[\sin(5t) - \sin(t)].

  2. Rewrite the function: f(t)=e2tt(12[sin(5t)sin(t)])=12e2t(tsin(5t)tsin(t))f(t) = e^{-2t} t \left( \frac{1}{2}[\sin(5t) - \sin(t)] \right) = \frac{1}{2} e^{-2t} (t \sin(5t) - t \sin(t)).

  3. Apply Linearity: The Laplace Transform is linear. L[f(t)]=12(L[e2ttsin(5t)]L[e2ttsin(t)])L[f(t)] = \frac{1}{2} \left( L[e^{-2t} t \sin(5t)] - L[e^{-2t} t \sin(t)] \right).

  4. Laplace Transform of tsin(ωt)t \sin(\omega t): Use the property L[tg(t)]=ddsG(s)L[t g(t)] = - \frac{d}{ds} G(s), where G(s)=L[g(t)]G(s) = L[g(t)]. We know L[sin(ωt)]=ωs2+ω2L[\sin(\omega t)] = \frac{\omega}{s^2 + \omega^2}. L[tsin(ωt)]=dds(ωs2+ω2)=2sω(s2+ω2)2L[t \sin(\omega t)] = - \frac{d}{ds} \left( \frac{\omega}{s^2 + \omega^2} \right) = \frac{2s\omega}{(s^2 + \omega^2)^2}.

  5. Calculate individual transforms:

    • For tsin(5t)t \sin(5t) (ω=5\omega=5): L[tsin(5t)]=2s(5)(s2+52)2=10s(s2+25)2L[t \sin(5t)] = \frac{2s(5)}{(s^2 + 5^2)^2} = \frac{10s}{(s^2 + 25)^2}.
    • For tsin(t)t \sin(t) (ω=1\omega=1): L[tsin(t)]=2s(1)(s2+12)2=2s(s2+1)2L[t \sin(t)] = \frac{2s(1)}{(s^2 + 1^2)^2} = \frac{2s}{(s^2 + 1)^2}.
  6. Apply First Shifting Theorem: L[eatg(t)]=G(sa)L[e^{at} g(t)] = G(s-a). Here a=2a=-2.

    • L[e2ttsin(5t)]=10(s+2)((s+2)2+25)2L[e^{-2t} t \sin(5t)] = \frac{10(s+2)}{((s+2)^2 + 25)^2}.
    • L[e2ttsin(t)]=2(s+2)((s+2)2+1)2L[e^{-2t} t \sin(t)] = \frac{2(s+2)}{((s+2)^2 + 1)^2}.
  7. Combine results: L[f(t)]=12(10(s+2)((s+2)2+25)22(s+2)((s+2)2+1)2)L[f(t)] = \frac{1}{2} \left( \frac{10(s+2)}{((s+2)^2 + 25)^2} - \frac{2(s+2)}{((s+2)^2 + 1)^2} \right).

  8. Simplify: L[f(t)]=(s+2)(5((s+2)2+25)21((s+2)2+1)2)L[f(t)] = (s+2) \left( \frac{5}{((s+2)^2 + 25)^2} - \frac{1}{((s+2)^2 + 1)^2} \right). Substitute (s+2)2=s2+4s+4(s+2)^2 = s^2 + 4s + 4: L[f(t)]=(s+2)(5(s2+4s+4+25)21(s2+4s+4+1)2)L[f(t)] = (s+2) \left( \frac{5}{(s^2 + 4s + 4 + 25)^2} - \frac{1}{(s^2 + 4s + 4 + 1)^2} \right) L[f(t)]=(s+2)(5(s2+4s+29)21(s2+4s+5)2)L[f(t)] = (s+2) \left( \frac{5}{(s^2 + 4s + 29)^2} - \frac{1}{(s^2 + 4s + 5)^2} \right).