Question
Question: Find the inverse of the matrix whose rows are 1,-1,2 and 3,0,-2 and 1,0,3...
Find the inverse of the matrix whose rows are 1,-1,2 and 3,0,-2 and 1,0,3
The inverse of the matrix is:
0−10113111−111112118113
Solution
The given matrix is A=131−1002−23.
To find the inverse of A, we use the elementary row operations method by augmenting the matrix A with the identity matrix I:
[A∣I]=131−1002−23∣∣∣100010001
Perform row operations to transform the left side into the identity matrix:
- R2→R2−3R1:
101−1302−83∣∣∣1−30010001
- R3→R3−R1:
100−1312−81∣∣∣1−3−1010001
- R2↔R3:
100−11321−8∣∣∣1−1−3001010
- R1→R1+R2:
10001331−8∣∣∣0−1−3001110
- R3→R3−3R2:
10001031−11∣∣∣0−1000111−3
- R3→−111R3:
100010311∣∣∣0−1000−11111113
- R1→R1−3R3:
100010011∣∣∣0−101130−1111121113
- R2→R2−R3:
100010001∣∣∣0−10113111−111112118113
The left side is the identity matrix, so the right side is the inverse matrix A−1.
A−1=0−10113111−111112118113=1110−11031−1283