Solveeit Logo

Question

Question: Find the inverse of the matrix whose rows are 1,-1,2 and 3,0,-2 and 1,0,3...

Find the inverse of the matrix whose rows are 1,-1,2 and 3,0,-2 and 1,0,3

Answer

The inverse of the matrix is:

[031121111118110111311]\begin{bmatrix} 0 & \frac{3}{11} & \frac{2}{11} \\ -1 & \frac{1}{11} & \frac{8}{11} \\ 0 & -\frac{1}{11} & \frac{3}{11} \end{bmatrix}

Explanation

Solution

The given matrix is A=[112302103]A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}.

To find the inverse of AA, we use the elementary row operations method by augmenting the matrix AA with the identity matrix II:

[AI]=[112100302010103001][A | I] = \begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 3 & 0 & -2 & | & 0 & 1 & 0 \\ 1 & 0 & 3 & | & 0 & 0 & 1 \end{bmatrix}

Perform row operations to transform the left side into the identity matrix:

  1. R2R23R1R_2 \rightarrow R_2 - 3R_1:

[112100038310103001]\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 3 & -8 & | & -3 & 1 & 0 \\ 1 & 0 & 3 & | & 0 & 0 & 1 \end{bmatrix}

  1. R3R3R1R_3 \rightarrow R_3 - R_1:

[112100038310011101]\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 3 & -8 & | & -3 & 1 & 0 \\ 0 & 1 & 1 & | & -1 & 0 & 1 \end{bmatrix}

  1. R2R3R_2 \leftrightarrow R_3:

[112100011101038310]\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -1 & 0 & 1 \\ 0 & 3 & -8 & | & -3 & 1 & 0 \end{bmatrix}

  1. R1R1+R2R_1 \rightarrow R_1 + R_2:

[103001011101038310]\begin{bmatrix} 1 & 0 & 3 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & -1 & 0 & 1 \\ 0 & 3 & -8 & | & -3 & 1 & 0 \end{bmatrix}

  1. R3R33R2R_3 \rightarrow R_3 - 3R_2:

[1030010111010011013]\begin{bmatrix} 1 & 0 & 3 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & -1 & 0 & 1 \\ 0 & 0 & -11 & | & 0 & 1 & -3 \end{bmatrix}

  1. R3111R3R_3 \rightarrow -\frac{1}{11}R_3:

[1030010111010010111311]\begin{bmatrix} 1 & 0 & 3 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & -1 & 0 & 1 \\ 0 & 0 & 1 & | & 0 & -\frac{1}{11} & \frac{3}{11} \end{bmatrix}

  1. R1R13R3R_1 \rightarrow R_1 - 3R_3:

[10003112110111010010111311]\begin{bmatrix} 1 & 0 & 0 & | & 0 & \frac{3}{11} & \frac{2}{11} \\ 0 & 1 & 1 & | & -1 & 0 & 1 \\ 0 & 0 & 1 & | & 0 & -\frac{1}{11} & \frac{3}{11} \end{bmatrix}

  1. R2R2R3R_2 \rightarrow R_2 - R_3:

[100031121101011118110010111311]\begin{bmatrix} 1 & 0 & 0 & | & 0 & \frac{3}{11} & \frac{2}{11} \\ 0 & 1 & 0 & | & -1 & \frac{1}{11} & \frac{8}{11} \\ 0 & 0 & 1 & | & 0 & -\frac{1}{11} & \frac{3}{11} \end{bmatrix}

The left side is the identity matrix, so the right side is the inverse matrix A1A^{-1}.

A1=[031121111118110111311]=111[0321118013]A^{-1} = \begin{bmatrix} 0 & \frac{3}{11} & \frac{2}{11} \\ -1 & \frac{1}{11} & \frac{8}{11} \\ 0 & -\frac{1}{11} & \frac{3}{11} \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}