Question
Question: Find the inverse of the matrix\(\left( {\begin{array}{*{20}{c}} { - 3}&2 \\\ 5&{ - 3} \e...
Find the inverse of the matrix\left( {\begin{array}{*{20}{c}}
{ - 3}&2 \\\
5&{ - 3}
\end{array}} \right). Hence find the matrix P satisfying the matrix equation:
P\left( {\begin{array}{*{20}{c}}
{ - 3}&2 \\\
5&{ - 3}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&2 \\\
2&{ - 1}
\end{array}} \right)
Solution
Hint : 1. When a matrix A is multiplied with its inverse A-1, it gives out identity matrix as a result.
i.e. AA−1=I
2. Inverse of a matrix is defined as the adjoint of the matrix divided by its determinant.
i.e. A−1=∣A∣adjA
3. If we are given thatA = \left( {\begin{array}{*{20}{c}}
a&b; \\\
d&c;
\end{array}} \right)
Then, adjoint of a matrix is defined as adjA = \left( {\begin{array}{*{20}{c}}
c&{ - b} \\\
d&a;
\end{array}} \right)
Complete step-by-step answer :
We are given that A = \left( {\begin{array}{*{20}{c}}
{ - 3}&2 \\\
5&{ - 3}
\end{array}} \right)
1. Then by using the hint adjA = \left( {\begin{array}{*{20}{c}}
{ - 3}&{ - 2} \\\
{ - 5}&{ - 3}
\end{array}} \right)
2. Determinant of matrix A can be found out as,
∣A∣=((−3)×(−3))−(5×2) ∣A∣=9−10 ∣A∣=−1
3. Now for finding the inverse of the matrix, then
A−1=∣A∣adjA
Putting the values of adjAand ∣A∣ in the above equation, we get
\begin{gathered}
{A^{ - 1}} = \dfrac{{\left( {\begin{array}{*{20}{c}}
{ - 3}&{ - 2} \\\
{ - 5}&{ - 3}
\end{array}} \right)}}{{ - 1}} \\\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
3&2 \\\
5&3
\end{array}} \right) \\\
\end{gathered}
The inverse of the matrix A is{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
3&2 \\\
5&3
\end{array}} \right).
4. Now for finding out the value of P such that
P\left( {\begin{array}{*{20}{c}}
{ - 3}&2 \\\
5&{ - 3}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&2 \\\
2&{ - 1}
\end{array}} \right) ...... (1)
Since we know that
A = \left( {\begin{array}{*{20}{c}}
{ - 3}&2 \\\
5&{ - 3}
\end{array}} \right)
Let, B = \left( {\begin{array}{*{20}{c}}
1&2 \\\
2&{ - 1}
\end{array}} \right)
So Eqn (1) can also be written as
PA=B
Multiplying by A−1both sides we get
PAA−1=BA−1
Since we know that when a matrix is multiplied it with its inverse than it results in identity matrix
i.e. AA−1=I
PI=BA−1
P=BA−1
Since, now we know the values of A−1andB. Putting in the above equation, we get
\begin{gathered}
P = \left( {\begin{array}{*{20}{c}}
1&2 \\\
2&{ - 1}
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
3&2 \\\
5&3
\end{array}} \right) \\\
P = \left( {\begin{array}{*{20}{c}}
{(1 \times 3) + (2 \times 5)}&{(1 \times 2) + (2 \times 3)} \\\
{(2 \times 3) + ( - 1 \times 5)}&{(2 \times 2) + ( - 1 \times 3)}
\end{array}} \right) \\\
P = \left( {\begin{array}{*{20}{c}}
{3 + 10}&{2 + 6} \\\
{6 + ( - 5)}&{4 + ( - 3)}
\end{array}} \right) \\\
P = \left( {\begin{array}{*{20}{c}}
{13}&8 \\\
{6 - 5}&{4 - 3}
\end{array}} \right) \\\
P = \left( {\begin{array}{*{20}{c}}
{13}&8 \\\
1&1
\end{array}} \right) \\\
\end{gathered}
Therefore, the value of P is:
P = \left( {\begin{array}{*{20}{c}}
{13}&8 \\\
1&1
\end{array}} \right)
Note : When an identity matrix Iis multiplied to any matrix then the resultant matrix is same as the multiplied matrix
i.e. AI−1=A