Solveeit Logo

Question

Question: Find the inverse of the matrix\[\left[ {\begin{array}{*{20}{c}} 1&2&1 \\\ 3&0&1 \\\ 0&...

Find the inverse of the matrix\left[ {\begin{array}{*{20}{c}} 1&2&1 \\\ 3&0&1 \\\ 0&2&1 \end{array}} \right] using the method of adjoint.

Explanation

Solution

We find the determinant of the matrix. Use the method of minors and cofactors to find the adjoint of the given matrix. Use the formula of inverse of a matrix using adjoint of matrix and inverse of matrix.

  • Determinant of a matrix \left[ {\begin{array}{*{20}{c}} a&b;&c; \\\ d&e;&f; \\\ g&h;&i; \end{array}} \right] = a(ei - hf) - b(di - fg) + c(dh - eg)
  • Adjoint of a matrix A is given byadjA = {\left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&{{A_{13}}} \\\ {{A_{21}}}&{{A_{22}}}&{{A_{23}}} \\\ {{A_{31}}}&{{A_{32}}}&{{A_{33}}} \end{array}} \right]^T}, where T stands for transpose.
    Each element Aij{A_{ij}}is given by calculating the determinant of the matrix obtained by removing ithi^{th} row and jthj^{th} column from the matrix. Also, the sign of the element Aij{A_{ij}}is given by (1)i+j{( - 1)^{i + j}}.
  • Inverse of a matrix A is given by A1=1AadjA{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA

Complete step by step solution:
Let us assume the matrixA = \left[ {\begin{array}{*{20}{c}} 1&2&1 \\\ 3&0&1 \\\ 0&2&1 \end{array}} \right]
We find the determinant of the matrix A using the formula of determinant.
A=1((0×1)(2×1))2((3×1)(0×1))+1((3×2)(0×0))\Rightarrow \left| A \right| = 1\left( {(0 \times 1) - (2 \times 1)} \right) - 2\left( {(3 \times 1) - (0 \times 1)} \right) + 1\left( {(3 \times 2) - (0 \times 0)} \right)
Calculate the products in the brackets
A=1(02)2(30)+1(60)\Rightarrow \left| A \right| = 1\left( {0 - 2} \right) - 2\left( {3 - 0} \right) + 1\left( {6 - 0} \right)
A=1×(2)2×(3)+1×(6)\Rightarrow \left| A \right| = 1 \times ( - 2) - 2 \times (3) + 1 \times (6)
Calculate the products
A=26+6\Rightarrow \left| A \right| = - 2 - 6 + 6
Cancel same terms with opposite signs
A=2\Rightarrow \left| A \right| = - 2.................… (1)
Since the determinant of the matrix is non-negative, the inverse of the matrix exists.
Now we find the adjoint of matrix A

{{{( - 1)}^{1 + 1}}( - 2)}&{{{( - 1)}^{1 + 2}}(3)}&{{{( - 1)}^{1 + 3}}(6)} \\\ {{{( - 1)}^{2 + 1}}(0)}&{{{( - 1)}^{2 + 2}}(1)}&{{{( - 1)}^{2 + 3}}(2)} \\\ {{{( - 1)}^{3 + 1}}(2)}&{{{( - 1)}^{3 + 2}}( - 2)}&{{{( - 1)}^{3 + 3}}( - 6)} \end{array}} \right]^T}$$ $$ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}} {{{( - 1)}^2}( - 2)}&{{{( - 1)}^3}(3)}&{{{( - 1)}^4}(6)} \\\ {{{( - 1)}^3}(0)}&{{{( - 1)}^4}(1)}&{{{( - 1)}^5}(2)} \\\ {{{( - 1)}^4}(2)}&{{{( - 1)}^5}( - 2)}&{{{( - 1)}^6}( - 6)} \end{array}} \right]^T}$$ Write even powers of -1 equal to 1 and odd powers of -1 equal to -1 $$ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}} {(1)( - 2)}&{( - 1)(3)}&{(1)(6)} \\\ {( - 1)(0)}&{(1)(1)}&{( - 1)(2)} \\\ {(1)(2)}&{( - 1)( - 2)}&{(1)( - 6)} \end{array}} \right]^T}$$ Multiply the negative signs $$ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}} { - 2}&{ - 3}&6 \\\ 0&1&{ - 2} \\\ 2&2&{ - 6} \end{array}} \right]^T}$$ Now take transpose of the matrix in RHS, i.e. write columns in place of rows and rows in place of columns. $$ \Rightarrow adjA = \left[ {\begin{array}{*{20}{c}} { - 2}&0&2 \\\ { - 3}&1&2 \\\ 6&{ - 2}&{ - 6} \end{array}} \right]$$....................… (2) Substitute the values of determinant A and adjoint A in the formula of inverse i.e.$${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA$$ Substitute values from equation (1) and (2) $$ \Rightarrow {A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}} { - 2}&0&2 \\\ { - 3}&1&2 \\\ 6&{ - 2}&{ - 6} \end{array}} \right]$$ $$\therefore $$The inverse of matrix$$\left[ {\begin{array}{*{20}{c}} 1&2&1 \\\ 3&0&1 \\\ 0&2&1 \end{array}} \right]$$ is $$\dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}} { - 2}&0&2 \\\ { - 3}&1&2 \\\ 6&{ - 2}&{ - 6} \end{array}} \right]$$. **Note:** Students are likely to make the mistake of writing the value of determinant as positive because there is a modulus sign along with it, but keep in mind that sign is the sign for the matrix name, the value of determinant need not be positive.