Question
Question: Find the inverse of the matrix (if it exists) \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3 \\\ ...
Find the inverse of the matrix (if it exists)
A = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\\
0&2&4 \\\
0&0&5
\end{array}} \right]
Solution
In this particular question use the concept that inverse of a matrix is calculated as, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}{\left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right]^T}, where T is the symbol of transpose i.e. all rows changed into columns or all columns changed into rows, and aij is the determinant of the elements except column i and column j and that minor determinants is multiplied by the (−1)n, where n = 1, 2, 3..... 9, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
A = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\\
0&2&4 \\\
0&0&5
\end{array}} \right]
Now we have to find out the inverse of this matrix.
Now as we know that inverse of the matrix is calculated as,
A−1=∣A∣1(adjA)................ (1)
Where adj (A) = {\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right]^T}
Now if |A|=0 then inverse of the matrix exists otherwise not.
So first find out the determinant of the matrix i.e. |A|.
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
1&2&3 \\\
0&2&4 \\\
0&0&5
\end{array}} \right|
Now expand this matrix we have,
\Rightarrow \left| A \right| = 1\left| {\begin{array}{*{20}{c}}
2&4 \\\
0&5
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
0&4 \\\
0&5
\end{array}} \right| + 3\left| {\begin{array}{*{20}{c}}
0&2 \\\
0&0
\end{array}} \right|
Now expand the mini determinant we have,
⇒∣A∣=1(2(5)−0(4))−2(0(5)−0(4))+3(0−0(2))
⇒∣A∣=1(10)−2(0)+3(0)
⇒∣A∣=10=0
So the inverse of the matrix exists.
Now find out the adj (A)
adj (A) = {\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right]^T}
Now first find out the internal elements of the above matrix, where aij=(−1)naij
\Rightarrow {a_{11}} = {\left( { - 1} \right)^1}\left| {\begin{array}{*{20}{c}}
2&4 \\\
0&5
\end{array}} \right| = - \left( {10 - 0} \right) = - 10
\Rightarrow {a_{12}} = {\left( { - 1} \right)^2}\left| {\begin{array}{*{20}{c}}
0&4 \\\
0&5
\end{array}} \right| = + \left( {0 - 0} \right) = 0
\Rightarrow {a_{13}} = {\left( { - 1} \right)^3}\left| {\begin{array}{*{20}{c}}
0&2 \\\
0&0
\end{array}} \right| = - \left( {0 - 0} \right) = 0
\Rightarrow {a_{21}} = {\left( { - 1} \right)^4}\left| {\begin{array}{*{20}{c}}
2&3 \\\
0&5
\end{array}} \right| = + \left( {10 - 0} \right) = 10
\Rightarrow {a_{22}} = {\left( { - 1} \right)^5}\left| {\begin{array}{*{20}{c}}
1&3 \\\
0&5
\end{array}} \right| = - \left( {5 - 0} \right) = - 5
\Rightarrow {a_{23}} = {\left( { - 1} \right)^6}\left| {\begin{array}{*{20}{c}}
1&2 \\\
0&0
\end{array}} \right| = + \left( {0 - 0} \right) = 0
\Rightarrow {a_{31}} = {\left( { - 1} \right)^7}\left| {\begin{array}{*{20}{c}}
2&3 \\\
2&4
\end{array}} \right| = - \left( {8 - 6} \right) = - 2
\Rightarrow {a_{32}} = {\left( { - 1} \right)^8}\left| {\begin{array}{*{20}{c}}
1&3 \\\
0&4
\end{array}} \right| = + \left( {4 - 0} \right) = 4