Question
Question: Find the inverse of matrix with rows 19,45,43 and 71,81,61 and 32,41,44...
Find the inverse of matrix with rows 19,45,43 and 71,81,61 and 32,41,44
−1063/18826586/9413−319/18826217/18826270/9413−661/18826369/9413−947/9413828/9413
Solution
Let the given matrix be A=197132458141436144.
We find the determinant of A: det(A)=19(81×44−61×41)−45(71×44−61×32)+43(71×41−81×32) det(A)=19(3564−2501)−45(3124−1952)+43(2911−2592) det(A)=19(1063)−45(1172)+43(319) det(A)=20197−52740+13717=33914−52740=−18826. Since det(A)=0, the inverse exists.
We find the cofactor matrix C: C=1063−217−738−1172−5401894319661−1656
We find the adjoint matrix adj(A)=CT: adj(A)=1063−1172319−217−540661−7381894−1656
The inverse matrix is A−1=det(A)1adj(A): A−1=−1882611063−1172319−217−540661−7381894−1656 A−1=−1063/188261172/18826−319/18826217/18826540/18826−661/18826738/18826−1894/188261656/18826
Simplifying the fractions: A−1=−1063/18826586/9413−319/18826217/18826270/9413−661/18826369/9413−947/9413828/9413