Solveeit Logo

Question

Question: Find the inverse of matrix with rows 19,45,43 and 71,81,61 and 32,41,44...

Find the inverse of matrix with rows 19,45,43 and 71,81,61 and 32,41,44

Answer

[1063/18826217/18826369/9413586/9413270/9413947/9413319/18826661/18826828/9413]\begin{bmatrix} -1063/18826 & 217/18826 & 369/9413 \\ 586/9413 & 270/9413 & -947/9413 \\ -319/18826 & -661/18826 & 828/9413 \end{bmatrix}

Explanation

Solution

Let the given matrix be A=[194543718161324144]A = \begin{bmatrix} 19 & 45 & 43 \\ 71 & 81 & 61 \\ 32 & 41 & 44 \end{bmatrix}.

We find the determinant of AA: det(A)=19(81×4461×41)45(71×4461×32)+43(71×4181×32)\det(A) = 19(81 \times 44 - 61 \times 41) - 45(71 \times 44 - 61 \times 32) + 43(71 \times 41 - 81 \times 32) det(A)=19(35642501)45(31241952)+43(29112592)\det(A) = 19(3564 - 2501) - 45(3124 - 1952) + 43(2911 - 2592) det(A)=19(1063)45(1172)+43(319)\det(A) = 19(1063) - 45(1172) + 43(319) det(A)=2019752740+13717=3391452740=18826\det(A) = 20197 - 52740 + 13717 = 33914 - 52740 = -18826. Since det(A)0\det(A) \neq 0, the inverse exists.

We find the cofactor matrix CC: C=[1063117231921754066173818941656]C = \begin{bmatrix} 1063 & -1172 & 319 \\ -217 & -540 & 661 \\ -738 & 1894 & -1656 \end{bmatrix}

We find the adjoint matrix adj(A)=CT\text{adj}(A) = C^T: adj(A)=[1063217738117254018943196611656]\text{adj}(A) = \begin{bmatrix} 1063 & -217 & -738 \\ -1172 & -540 & 1894 \\ 319 & 661 & -1656 \end{bmatrix}

The inverse matrix is A1=1det(A)adj(A)A^{-1} = \frac{1}{\det(A)} \text{adj}(A): A1=118826[1063217738117254018943196611656]A^{-1} = \frac{1}{-18826} \begin{bmatrix} 1063 & -217 & -738 \\ -1172 & -540 & 1894 \\ 319 & 661 & -1656 \end{bmatrix} A1=[1063/18826217/18826738/188261172/18826540/188261894/18826319/18826661/188261656/18826]A^{-1} = \begin{bmatrix} -1063/18826 & 217/18826 & 738/18826 \\ 1172/18826 & 540/18826 & -1894/18826 \\ -319/18826 & -661/18826 & 1656/18826 \end{bmatrix}

Simplifying the fractions: A1=[1063/18826217/18826369/9413586/9413270/9413947/9413319/18826661/18826828/9413]A^{-1} = \begin{bmatrix} -1063/18826 & 217/18826 & 369/9413 \\ 586/9413 & 270/9413 & -947/9413 \\ -319/18826 & -661/18826 & 828/9413 \end{bmatrix}