Solveeit Logo

Question

Question: Find The inverse of matrix whose row 1 is 2,0,-1 row 2 is 5,1,0 and row 3 is 0,1,3...

Find The inverse of matrix whose row 1 is 2,0,-1 row 2 is 5,1,0 and row 3 is 0,1,3

Answer

[3111565522]\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}

Explanation

Solution

Let the given matrix be AA.

A=[201510013]A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}

To find the inverse of matrix AA, we augment it with the identity matrix II of the same size, forming the augmented matrix [AI][A | I].

[AI]=[201100510010013001][A | I] = \begin{bmatrix} 2 & 0 & -1 & | & 1 & 0 & 0 \\ 5 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{bmatrix}

Apply elementary row operations to transform the left side into the identity matrix.

  1. R1R2R_1 \leftrightarrow R_2:

[510010201100013001]\begin{bmatrix} 5 & 1 & 0 & | & 0 & 1 & 0 \\ 2 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{bmatrix}

  1. R1R12R2R_1 \rightarrow R_1 - 2R_2:

[112210201100013001]\begin{bmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 2 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{bmatrix}

  1. R2R22R1R_2 \rightarrow R_2 - 2R_1:

[112210025520013001]\begin{bmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & -2 & -5 & | & 5 & -2 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{bmatrix}

  1. R2R3R_2 \leftrightarrow R_3:

[112210013001025520]\begin{bmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \\ 0 & -2 & -5 & | & 5 & -2 & 0 \end{bmatrix}

  1. R1R1R2R_1 \rightarrow R_1 - R_2:

[101211013001025520]\begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & -1 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \\ 0 & -2 & -5 & | & 5 & -2 & 0 \end{bmatrix}

  1. R3R3+2R2R_3 \rightarrow R_3 + 2R_2:

[101211013001001522]\begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & -1 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{bmatrix}

  1. R1R1+R3R_1 \rightarrow R_1 + R_3:

[100311013001001522]\begin{bmatrix} 1 & 0 & 0 & | & 3 & -1 & 1 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{bmatrix}

  1. R2R23R3R_2 \rightarrow R_2 - 3R_3:

[10031101003(5)03(2)13(2)001522]\begin{bmatrix} 1 & 0 & 0 & | & 3 & -1 & 1 \\ 0 & 1 & 0 & | & 0 - 3(5) & 0 - 3(-2) & 1 - 3(2) \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{bmatrix}

[1003110101565001522]\begin{bmatrix} 1 & 0 & 0 & | & 3 & -1 & 1 \\ 0 & 1 & 0 & | & -15 & 6 & -5 \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{bmatrix}

The left side is now the identity matrix. The matrix on the right side is the inverse of AA.

A1=[3111565522]A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}

In summary, the inverse of the matrix A=[201510013]A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} is found by augmenting AA with the identity matrix II to form [AI][A|I] and applying elementary row operations to transform [AI][A|I] into [IA1][I|A^{-1}].