Solveeit Logo

Question

Question: Find the inverse of matrix...

Find the inverse of matrix

Answer

[326112225]\begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}

Explanation

Solution

The question asks to find the inverse of a matrix, but the matrix itself is not provided in the question text. Based on the provided similar question, it is assumed that the question intends to ask for the inverse of the matrix A=[122130021]A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} using elementary row operations.

To find the inverse of matrix AA, we augment it with the identity matrix II of the same size, forming the augmented matrix [AI][A | I].

[AI]=[122100130010021001][A | I] = \begin{bmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ -1 & 3 & 0 & | & 0 & 1 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix}

Apply elementary row operations to transform the left side into the identity matrix.

  1. R2R2+R1R_2 \rightarrow R_2 + R_1: [122100052110021001]\begin{bmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ 0 & 5 & -2 & | & 1 & 1 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix}

  2. R215R2R_2 \rightarrow \frac{1}{5} R_2: [122100012/51/51/50021001]\begin{bmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & -2/5 & | & 1/5 & 1/5 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix}

  3. R1R12R2R_1 \rightarrow R_1 - 2R_2 and R3R3+2R2R_3 \rightarrow R_3 + 2R_2: [106/53/52/50012/51/51/50001/52/52/51]\begin{bmatrix} 1 & 0 & -6/5 & | & 3/5 & -2/5 & 0 \\ 0 & 1 & -2/5 & | & 1/5 & 1/5 & 0 \\ 0 & 0 & 1/5 & | & 2/5 & 2/5 & 1 \end{bmatrix}

  4. R35R3R_3 \rightarrow 5R_3: [106/53/52/50012/51/51/50001225]\begin{bmatrix} 1 & 0 & -6/5 & | & 3/5 & -2/5 & 0 \\ 0 & 1 & -2/5 & | & 1/5 & 1/5 & 0 \\ 0 & 0 & 1 & | & 2 & 2 & 5 \end{bmatrix}

  5. R1R1+65R3R_1 \rightarrow R_1 + \frac{6}{5}R_3 and R2R2+25R3R_2 \rightarrow R_2 + \frac{2}{5}R_3: [100326010112001225]\begin{bmatrix} 1 & 0 & 0 & | & 3 & 2 & 6 \\ 0 & 1 & 0 & | & 1 & 1 & 2 \\ 0 & 0 & 1 & | & 2 & 2 & 5 \end{bmatrix}

The left side is now the identity matrix. The matrix on the right side is the inverse of AA.

A1=[326112225]A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}

Explanation: The inverse of the matrix A=[122130021]A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} is found by augmenting AA with the identity matrix II to form [AI][A|I] and applying elementary row operations to transform [AI][A|I] into [IA1][I|A^{-1}]. The sequence of row operations used is R2R2+R1R_2 \rightarrow R_2 + R_1, R215R2R_2 \rightarrow \frac{1}{5}R_2, R1R12R2R_1 \rightarrow R_1 - 2R_2, R3R3+2R2R_3 \rightarrow R_3 + 2R_2, R35R3R_3 \rightarrow 5R_3, R1R1+65R3R_1 \rightarrow R_1 + \frac{6}{5}R_3, R2R2+25R3R_2 \rightarrow R_2 + \frac{2}{5}R_3. The resulting matrix on the right side is the inverse matrix.