Solveeit Logo

Question

Question: Find the inverse of following matrix using elementary row transformation: \(\left[ \begin{matrix} ...

Find the inverse of following matrix using elementary row transformation:
[52 21 ]\left[ \begin{matrix} 5 & 2 \\\ 2 & 1 \\\ \end{matrix} \right]

Explanation

Solution

Hint: In elementary row transformation we always try to write a given matrix in the form of AA1=IA{{A}^{-1}}=I by using transformation either in row or column.

Complete step-by-step answer:
The given matrix is A.
So we can write
A=[52 21 ]A=\left[ \begin{matrix} 5 & 2 \\\ 2 & 1 \\\ \end{matrix} \right]
By property of matrix we can write
A=AI\Rightarrow A=AI
Hence we have
[52 21 ]=A[10 01 ]\Rightarrow \left[ \begin{matrix} 5 & 2 \\\ 2 & 1 \\\ \end{matrix} \right]=A\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] because I is a unit matrix.
Now we will try to convert the left hand side matrix as a unit matrix by using transformation of row or columns. We will do the same changes in the right hand side unit matrix.
We can divide row 1 by 5 to make 5 as 1.
R1R15{{R}_{1}}\to \dfrac{{{R}_{1}}}{5}
[125 21 ]=A[150 01 ]\Rightarrow \left[ \begin{matrix} 1 & \dfrac{2}{5} \\\ 2 & 1 \\\ \end{matrix} \right]=A\left[ \begin{matrix} \dfrac{1}{5} & 0 \\\ 0 & 1 \\\ \end{matrix} \right]
Now to make 2 as zero in row 2 we can subtract row 2 by 2 times of row 1.
R2R22R1{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}
[125 22×1145 ]=A[150 02512×0 ]\Rightarrow \left[ \begin{matrix} 1 & \dfrac{2}{5} \\\ 2-2\times 1 & 1-\dfrac{4}{5} \\\ \end{matrix} \right]=A\left[ \begin{matrix} \dfrac{1}{5} & 0 \\\ 0-\dfrac{2}{5} & 1-2\times 0 \\\ \end{matrix} \right]
[125 015 ]=A[150 251 ]\Rightarrow \left[ \begin{matrix} 1 & \dfrac{2}{5} \\\ 0 & \dfrac{1}{5} \\\ \end{matrix} \right]=A\left[ \begin{matrix} \dfrac{1}{5} & 0 \\\ \dfrac{-2}{5} & 1 \\\ \end{matrix} \right]
Now we can subtract 2 times of row 2 from row 1 to make 25\dfrac{2}{5} as zero.
R1R12R2{{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}
[12×0252×15 015 ]=A[152×2502×1 251 ]\Rightarrow \left[ \begin{matrix} 1-2\times 0 & \dfrac{2}{5}-2\times \dfrac{1}{5} \\\ 0 & \dfrac{1}{5} \\\ \end{matrix} \right]=A\left[ \begin{matrix} \dfrac{1}{5}-2\times \dfrac{-2}{5} & 0-2\times 1 \\\ \dfrac{-2}{5} & 1 \\\ \end{matrix} \right]
[10 015 ]=A[12 251 ]\Rightarrow \left[ \begin{matrix} 1 & 0 \\\ 0 & \dfrac{1}{5} \\\ \end{matrix} \right]=A\left[ \begin{matrix} 1 & -2 \\\ \dfrac{-2}{5} & 1 \\\ \end{matrix} \right]
Now we can multiply row 2 by 5
R25×R2{{R}_{2}}\to 5\times {{R}_{2}}
[10 0×515×5 ]=A[12 25×51×5 ]\Rightarrow \left[ \begin{matrix} 1 & 0 \\\ 0\times 5 & \dfrac{1}{5}\times 5 \\\ \end{matrix} \right]=A\left[ \begin{matrix} 1 & -2 \\\ \dfrac{-2}{5}\times 5 & 1\times 5 \\\ \end{matrix} \right]
[10 01 ]=A[12 25 ]\Rightarrow \left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]=A\left[ \begin{matrix} 1 & -2 \\\ -2 & 5 \\\ \end{matrix} \right]
Now it is in form of I=AA1I=A{{A}^{-1}}
Hence inverse of given matrix is
A1=[12 25 ]{{A}^{-1}}=\left[ \begin{matrix} 1 & -2 \\\ -2 & 5 \\\ \end{matrix} \right]

Note: To find the inverse of any matrix , matrix should be square matrix means number of rows equal to number of columns in matrix.
We can do either row transformation or column transformation at a time. We can’t do both together.