Solveeit Logo

Question

Mathematics Question on Matrices

Find the inverse of each of the matrices,if it exists [21 74]\begin{bmatrix} 2 & 1 \\\ 7 & 4 \end{bmatrix}

Answer

Let A=[21 74]\begin{bmatrix} 2 & 1 \\\ 7 & 4 \end{bmatrix}

We know thatA=IAA = IA

\therefore [21 74]\begin{bmatrix} 2 & 1 \\\ 7 & 4 \end{bmatrix}= [10 01]\begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix} A

[112 74]\begin{bmatrix} 1 & \frac12 \\\ 7 & 4 \end{bmatrix}=[120 01]\begin{bmatrix} \frac12 & 0 \\\ 0 & 1 \end{bmatrix}A (R1 12R1\frac{1}{2}R_1)

[112 012]\begin{bmatrix} 1 & \frac12 \\\ 0 & \frac12 \end{bmatrix}=[120 721]\begin{bmatrix} \frac12 &0\\\ -\frac72 & 1 \end{bmatrix}A (R2→R2-7R1)

[10 012]\begin{bmatrix} 1 & 0 \\\ 0 & \frac12 \end{bmatrix}=[41 721]\begin{bmatrix} 4 & -1 \\\ -\frac72 & 1 \end{bmatrix}A (R1->R1-R2)

[10 02]\begin{bmatrix} 1 & 0 \\\ 0 & 2 \end{bmatrix} = [41 72]\begin{bmatrix} 4 & -1 \\\ -7 & 2 \end{bmatrix}A (R2->2R2)

\therefore A-1=[41 72]\begin{bmatrix} 4 & -1 \\\ -7 & 2 \end{bmatrix}