Solveeit Logo

Question

Mathematics Question on Matrices

Find the inverse of each of the matrices,if it exists. [23 57]\begin{bmatrix} 2 & 3\\\ 5 & 7 \end{bmatrix}

Answer

Let A=[23 57]\begin{bmatrix} 2 & 3\\\ 5 & 7 \end{bmatrix}

We know that A=IAA = IA

[23 57]\begin{bmatrix} 2 & 3\\\ 5 & 7 \end{bmatrix} = [10 01]A\begin{bmatrix} 1 & 0\\\ 0 & 1 \end{bmatrix}A

[132 57]\begin{bmatrix} 1 & \frac32\\\ 5 & 7 \end{bmatrix}=\begin{bmatrix} \frac12 & 0\\\ 0 & 1 \end{bmatrix}$$A (R1(12R1))(R_1 \rightarrow (\frac{1}{2}R_1) )

[132 012]\begin{bmatrix} 1 & \frac32\\\ 0 & \frac{-1}{2} \end{bmatrix}= [120 521]A\begin{bmatrix} \frac12 & 0\\\ -\frac{5}{2} & 1 \end{bmatrix}A (R2R25R1)(R_2→ R_2-5R_1)

\begin{bmatrix} 1 & 0\\\ 0 & \frac{-1}{2} \end{bmatrix}$$=\begin{bmatrix} -7 & 3\\\ -\frac{5}{2} & 1 \end{bmatrix}A (R1R1+3R2)(R_1→ R_1+3R_2)

[10 01]\begin{bmatrix} 1 & 0\\\ 0 & 1 \end{bmatrix} = [73 52]A\begin{bmatrix} -7 & 3\\\ 5 & -2 \end{bmatrix}A (R22R1)(R_2\rightarrow-2R_1)

A1A^{-1}= [73 52]\begin{bmatrix} -7 & 3\\\ 5 & -2 \end{bmatrix}