Solveeit Logo

Question

Mathematics Question on Matrices

Find the inverse of each of the matrices, if it exists. [26 12]\begin{bmatrix} 2 & -6 \\\ 1 & -2 \end{bmatrix}

Answer

Let A=[26 12]\begin{bmatrix} 2 & -6 \\\ 1 & -2 \end{bmatrix}

We know that A=AIA = AI

[26 12]\begin{bmatrix} 2 & -6 \\\ 1 & -2 \end{bmatrix}=A[10 01]\begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix}

[20 11]\begin{bmatrix} 2 & 0 \\\ 1 & 1 \end{bmatrix}=A [13 01]\begin{bmatrix} 1 & 3 \\\ 0 & 1 \end{bmatrix} (C2C2+3C1)(C_2\rightarrow C_2+3C_1)

[20 11]\begin{bmatrix} 2 & 0 \\\ 1 & 1 \end{bmatrix} A [23 11]\begin{bmatrix} -2 & 3 \\\ -1 & 1 \end{bmatrix} (C1C1C2)(C_1\rightarrow C_1-C_2)

[10 01]\begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix} =A [13 121]\begin{bmatrix} -1 & 3 \\\ -\frac12 & 1 \end{bmatrix} (C112C1)(C_1\rightarrow \frac{1}{2}C_1)

\thereforeA-1=[13 121]\begin{bmatrix} -1 & 3 \\\ -\frac12 & 1 \end{bmatrix}